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Social transfer programs are one of the primary tools used to assist poor families in
developing countries. These programs rely critically on targeting criteria that are used to
determine eligibility.

This paper develops a method to better understand and align the objectives of a program
with the targeting criteria used to implement that program. Our method leverages recent
advances in machine learning and causal inference that make it possible to predict the
marginal effects of a program on a recipient. We show how a given population allocation can
be decomposed into three distinct dimensions: (i) differential marginal effects, (ii) traditional
welfare weights, which assign higher priority to specific subsets of the population; and (iii)
multiple human development objectives, which a policymaker may wish to balance. Taken
together, this decomposition makes it possible to infer the policy’s implied preferences over
households and outcomes. We apply this approach to Mexico’s PROGRESA program, one
of the world’s largest anti-poverty subsidies, to elucidate existing targeting priorities. We
find that existing allocations are consistent with the government valuing an additional day
of school attendance at 108.07 pesos (of foregone household consumption), and valuing a
reduction in illness at 101.98 pesos per day. Allocations imply welfare weights that place
28.3% more value on the median household if indigenous, 7.5% more value for each additional
elder household member, and less value on educated and richer households. Alternate
eligibility criteria could have marginally improved average health and schooling outcomes at
a small cost to average consumption outcomes, or vice versa.
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1. Summary

Targeting is critical to social transfer programs. Governments typically target benefits to
households that are observably disadvantaged in some way, such as being poor or disabled.
But the rationale behind such criteria is often unclear. Do governments prioritize these
households because they are expected to benefit more? Or because these households are
intrinsically more valued? The distinction has deep implications for understanding and
designing optimal policies [Nichols and Zeckhauser, 1982, Coate and Morris, 1995]. In
particular, all members of society may agree to prioritize the households that will benefit
most from the program, but may disagree on how much welfare weight to apply to each type
of household.

This paper provides a method to infer policymaker preferences from observed transfer
allocations. This method makes it possible to separately estimate implied welfare weights
(i.e., which households the government prioritizes) and weights on different outcomes (how
the government weighs different impacts), from differential marginal effects (which households
benefit the most from the transfer). Ex post, we can pose counterfactual welfare weights and
valuations of outcomes to produce different allocations, and quantify the welfare impacts
of these adjustments. Our approach relies on recent innovations in machine learning that
make it possible to estimate the heterogenous treatment effects under random assignment
KÃŒnzel et al. [2019], Wager and Athey [2018]. We demonstrate how these advances can be
used to better understand and articulate the allocation of social programs.

We consider programs where eligibility is determined based on a score, which encodes
the policymaker’s ranking between any two households. This ranking implies a system of
inequalities, which we use to estimate the value that the government places on different
welfare outcomes (estimated using modern methods for heterogenous effects) and different
households (based on observed characteristics) by using ordinal support vector machine
regression, or “preference-learning” Herbrich et al. [1999], Chu and Keerthi [2007]. We develop
a utility model to formalize this approach in section 2 below.

Intuitively, if a government prefers to allocate to a household that would see a low impact
but which has some status (e.g., a disability), over a household for which it would have a
larger impact on outcomes, that suggests the government places higher welfare weight on
households with that status. Or, if a government prefers to allocate a benefit to a household
for which it would have a health impact over a household for which it would have a high
consumption impact, that implies that it highly values health. Our method can also be used
if an observer had only binary information on eligibility, though in that setting it will be less
informative.
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We show how this approach can be applied to data using the example of PROGRESA,
one of the world’s largest (and best-studied) anti-poverty programs.1 We begin by estimating
the heterogenous treatment effects of the program. Consistent with prior work using linear
models, we find considerable heterogeneity [Djebbari and Smith, 2008]. The joint and
marginal distributions of estimated treatment effects over households is shown in Figure
??. We then use preference-learning techniques based on implicit ranking inequalities to
disentangle welfare weights from planner preferences, and find that PROGRESA tends to
downweight impacts among highly educated households. Figure ?? shows the estimated
heterogeneous treatment effects across three outcomes: children’s days of missed school,
children’s days of sickness, and per-person household consumption.2

We further find that the Mexican government’s initial allocation rule implies a value of
108.07 pesos for each day of child school attendance and 101.98 pesos for each child sick
day. We find that the government would have placed 28.3% more value on the median
household if indigenous, 7.5% more value for each additional elder household member, and
less value on educated and richer households. The government later changed their allocation
rule; estimation using this new rule places more welfare weight on richer households, as well
as higher priority on indigenous status of households (35.8% higher value on the median
household), and similar priority for household size (12.3% higher value for each additional
household member).

Finally, we evaluate the counterfactual allocations that would result from alternate welfare
weights. If the government valued only consumption and schooling impacts, the rule would
increase the priority of low income and low education households. But if the government
valued only schooling, it would have instead decreased the priority of these two groups.
If the government cared only about lower-income households, the rule would de-prioritize
households with more children. We also assess a technocratic ranking that weighs impacts
according to external cost benefit estimates; this would have resulted in very marginally
lower average consumption in 1999 and more significantly lower levels of average missed
school days and sick days. Finally, we assess the impact of these alternative allocations
on consumption, sick days, and missed days of school, and predict that other alternative
allocations would have resulted in higher average consumption with no cost in terms of more
average sick days or more average missed days of school.

1PROGRESA is attractive because it is very well documented in prior work. However, its use in this
framework requires several simplifications. In particular, PROGRESA conditioned payouts on certain actions,
but we treat the program as an unconditional transfer. We also rule out the possibility that the policy may
have differential spillover benefits on different households.
Either could be accommodated in a richer model.
2As PROGRESA surveys measured “sick days” for children between 0 and 5 years of age, and “missed days
of school” for children between 6 and 16 years of age, each of these outcomes are measured in our data in
terms of sicks days per young child in the house and missed school days per school age child in the house,
respectively. As consumption was measured for all household members, this outcome is measured in terms of
average per-person consumption among household members.
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This approach makes it possible to invert the discussion about government programs.
Rather than debate the means of the policy (who is eligible, how large are the benefits), this
framework makes it possible to debate the ends (how much do we value health, education, or
consumption? By how much should we prioritize poor families over middle class families?).
The framework naturally applies to the debate about universal basic income versus targeting
transfers towards particular households [Hanna and Olken, 2018b].

This paper contributes to literature on optimal targeting and taxation Nichols and
Zeckhauser [1982], Barr [2012], Fleurbaey and Maniquet [2018], and especially work focused
on targeting in developing countries [Alatas et al., 2012, Hanna and Olken, 2018a]. It
builds on prior work that infers policymaker preferences from their actions [Timmins, 2003],
extending this approach by capitalizing on recent innovations in machine learning of predicted
individual treatment effects KÃŒnzel et al. [2019], Wager and Athey [2018]. Our empirical
results also engage with research on the effects [Behrman and Todd, 1999, Gertler, 2004,
John Hoddinott, 2004, Djebbari and Smith, 2008] and allocation of of cash transfer programs,
particularly PROGRESA [Skoufias et al., 2001, Coady, 2006]. We build on this work by
showing how effects and allocations can be combined to audit policymaker priorities, and
improve the design of future policies.

Finally, our efforts relate broadly to recent work on fairness in machine learning (Dwork
et al. [2012], Barocas et al. [2018]). Within this subfield, several papers have studied the
social welfare implications of algorithmic decisions, and how social welfare concerns relate
to different notions of fairness Ensign et al. [2017], Hu and Chen [2018], Mouzannar et al.
[2018], Liu et al. [2018]. Most directly related, Noriega et al. Noriega et al. [2018] discuss how
different constraints to targeting can impact efficiency and fairness. Our approach is distinct,
however, in that we show how using machine learning tools can be used to better characterize
and audit the implied priorities of a program, as revealed in the program’s observed allocation.
We hope that by providing increased visibility into these revealed preferences, future policies
can be better aligned with stated preferences and explicit policy objectives.

2. Model

We show how to back out the notion of welfare implied by the combination of the decisions
encoded in policy, and the impacts of those policies on different households.

We consider a planner deciding how to allocate treatment among N entities, which may be
individuals or households. For convenience, we refer to entities as households. The planner
selects a treatment status yi ∈ {0, 1} for each household i. Household i has characteristics
xi. The planner earns total welfare according to:

S =
∑
i

µ(xi) · u(yi,xi)
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where µ(xi) represents the welfare weight of a person with characteristics xi, and u(·, ·)
represents the policymaker’s evaluation of the household’s utility. This evaluation of utility
may be a linear combination of multiple outcome measures (such as consumption, health,
and education):

u(yi,xi) = C +
∑
j

λjgj(yi,xi)

where gj(·, ·) represents outcome j and λj represents its relative value, or ‘impact weight’,
and C is a constant representing the base value of providing the program, regardless of its
impact.

Imagine we have an experimental design that has recovered the (potentially heterogeneous)
effect of treatment on each outcome j as a function of covariates xi:

∆gj(xi) := gj(1,xi)− gj(0,xi)

The impact on social welfare is then:

∆S =
∑
i

µ(xi) · (C +
∑
j

λj∆gj(xi))

The policymaker assigns each household a score z(x), representing the priority order in
which they would receive program benefits.

We denominate welfare weights in units of the least preferred household, as the problem
is invariant to multiplicative scaling (µ(x) = 1, for x such that z(x) ≤ z(x)∀x). In our
application, we denominate λj weights in units of consumption, so λcons. = 1.

3. Intuition

To demonstrate the intuition behind our method, we consider a simple example in Figure
1. Consider the case of a single outcome and one dimension of heterogeneity, x, which
corresponds with consumption. A policymaker allocates a program by ordering households
by the function z(x), prioritizing poor households. As shown in Figure 1, the same allocation
rule could imply higher welfare weights on the poor, higher welfare weights on the rich, or
equal welfare weights, depending on how treatment effects vary with x.

The next section demonstrates how to empirically recover welfare and impact weights
from data in when there are multiple dimensions of heterogeneity and multiple outcomes of
interest.

4. Estimation

If we observe the planner allocate treatment, what can we infer about a policymaker’s
preferences (µ(xi), C, λ)?
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Figure 1. Intuitive Example
An allocation rule that prefers the poor (low x)...
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1. What we can infer from cardinal treatment scores. First, consider a policymaker
who ranks households according to the score z̃(xi), which is a cardinal ranking, so that

z̃(xi) = µ(xi) · (C +
∑
j

λj∆gj(xi))
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We assume that µ(xi) takes a linear functional form,

µ(xi) = βxi + εi

where β is an vector of coefficients with the same dimension as x. Then we can infer the
welfare weights with

E (z̃(xi)) = E

βxi · (C +
∑
j

λj∆gj(xi))


so long as the degrees of freedom (dim(β) + dim(λ)) are less than or equal to the number

of observations and εi⊥∆gj(xi)∀i, j, which is to say, any estimation error of the welfare
weights is distributed independently of the treatment effects. This assumes that there is no
omitted variable x̃i that drives both policymaker preferences over households and treatment
effects.

Crucially, the extent to which policymakers prioritize households intrinsically, without any
consideration for the relative marginal benefits of treatment, is captured by the comparative
size of the C term against the λj weights.

Estimation Method. Linear regression can be used to estimate the best-fit parameters for β
and λ.

2. What we can infer from ordinal treatment scores or treatment status.

If we observe ordinal treatment scores. Now consider the case where we don’t observe
the underlying cardinal score, but some monotone transformation z(xi) = f(z̃(xi)). This
transformation preserves the priority order of who would receive treatment, but no longer
describes the intensity of preferences.

For each pair of households i and i′, with zi > zi′ , we must have:

µ(xi) · (C +
∑
j

λj∆gj(xi)) ≥ µ(xi′) · (C +
∑
j

λj∆gj(xi′))

As above, we assume that µ(xi) takes a linear functional form,

µ(xi) = βxi + εi

We then combine the above two expressions to formulate the following inequalities:

E

hmi
βxi · (C +

∑
j

λj∆gj(xi))− βxi′ · (C +
∑
j

λj∆gj(xi′))

 ≥ 0
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which holds for any instruments hm such that hmi⊥εi∀i. So long as any error in µ(.) is
independently distributed from the household-level variable hmi, this formula should hold in
expectation. We include as instruments xi, ∆gj(xi) for each j, and the constant 1.3

These xik conditions then serve as the basis for a squared loss function Loss(β, λ,xi),
where, writing βxi ·

(
C +

∑
j λj∆gj(xi)

)
as δi(β),

(1)

Loss(β, λ,xi) =
∑

xi′ :z(xi′ )<z(xi)

1δi(β)<δi′ (β) +
∑
j

1∆gj(xi)δi(β)<∆gj(xi′ )δi′ (β) +
∑
k

∗1xikδi(β)<xi′kδi′ (β)


We then sum this loss over all xi to compute total aggregate loss,

∑
xi
Loss(β, λ,xi). In

the estimation procedure we also add a regularization parameter, determined using 3-fold
cross-validation, to control for overfitting, as is standard in preference-learning method
applications.

If we observe only allocation status. Now imagine we observe a policymaker selecting only a
final allocation y. Then, if the policymaker treated household i but not household i′, it must
be that was preferable to reversing the allocation:

µ(xi) · (C +
∑
j

λj∆gj(xi)) ≥ µ(xi′) · (C +
∑
j

λj∆gj(xi′))

This inequality condition is simply an ordinal ranking where z(xi) is a binary indicator. We
are therefore able to estimate β̂ and λ̂ exactly as described above, using the same conditions
to formulate the same loss functions.

Estimation Method. In the case where there is only one outcome of interest j, then the above
loss function in (1) reduces to:

(2)

Loss(β, xi) =
∑

xi′ :z(xi′ )<z(xi)

[
1δi(β)<δi′ (β) + 1∆g(xi)δi(β)<∆g(xi′ )δi′ (β) +

∑
k

∗1xikδi(β)<xi′kδi′ (β)

]

Minimizing the sum of this loss function over all observations with respect to β then allows
us to back out the estimated parameters of µ(xi), β̂. If there exists β̂ such that loss is zero
for all observations, we can recover the set of all parameter values that produce zero loss for
the dataset of {xi,∆gj(x′), z(xi)}. If there are no such parameter values of β̂ that produce
zero loss for the dataset, we will estimate the unique vector β̂ that minimizes the loss over
the observed data.4

3In the case that hmi < 0, the inequality is flipped, and the subsequent loss is calculated accordingly.
4It is also possible to have a range of parameter values that produce minimum loss if the objective function is
flat over the local region around the minimum. In our application, this only occurs when z(.) is very coarse
(such as a 0-1 binary treatment indicator) and treatment effects are estimated without heterogeneity, leaving
the algorithm little data to discriminate between different impact weights λ.
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In the case of j > 1 outcomes of interest, we must infer λj as well. We therefore jointly
estimate β̂ and λ̂ as the parameter values that minimize the full loss function as described in
equation (1), as derived directly from the utility inequality conditions. 5

Implicitly, the values of β̂ are being identified off of observations with relatively similar
treatment effects across outcomes but distinct rankings, as the difference between their ranks
must be driven by µ(xi); remaining variation in the ranking then identifies λ̂.

5. Empirical Example

We demonstrate our method on the Mexican PROGRESA conditional cash transfer (CCT)
program.

1. Context. PROGRESA began in the late 1990s and served as the inspiration and model
for a number of similar conditional cash transfer programs across Latin America, including a
large welfare program in Mexico, Oportunidades, that has served millions of poor families
in the years since. PROGRESA, first implemented by the Mexican federal government in
1997, was specifically designed to improve poor families’ investment in the human capital of
their children by incentivizing both health investments in pregnant women and very young
children (0-5 years in age) and incentivizing school attendance for families with children
enrolled in grades 3-9. Bi-monthly cash grants (equal to roughly 20% of pre-survey monthly
consumption) were offered to family mothers conditional on regular doctor’s visits and/or
regular school attendance, depending on eligibility.6

1.1. Targeting. PROGRESA targeted poor communities on the basis of a ‘village marginality
index’ (VMI), and targeted poor households within these communities on the basis of a
‘household poverty score’ (HPS). The VMI was based on a series of village-level variables,
including the proportion of households living in poverty, population density, and health
and education infrastructure. The HPS was based on a household-level proxy means test:
surveyors collected data on easily observable characteristics (such as housing materials, family
structure, etc.) on all households in eligible communities through a census, and for a small
sample, also collected in-depth information on per-capita consumption. The coefficients from
a regression of these observable characteristics on per-capita consumption for the in-depth
sample then served as the weights for constructing the HPS from these more easily-collected
data.
5We use only the indicator in the λ loss function in order to avoid endogeneity in penalization weights within
the loss function. For more details, see the Appendix.
6For a more detailed treatment of PROGRESA and its background, see Emmanuel Skoufias [2008], John Hod-
dinott [2004], and Simone Boyce [2003].
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1.2. Experimental Design. During the early years of its implementation, PROGRESA ad-
ministrators used a randomized experimental design as part of its staggered rollout across
communities: approximately 10% (506) of the 5,000 eligible communities were selected to be
part of the evaluation, with 320 assigned to the treatment group and 185 to the control group.
Behrman and Todd [1999] show that the randomization across communities was successful
in that treatment and control communities were statistically indistinguishable across a wide
array of observable covariates. Treatment communities were initiated into the PROGRESA
program in the summer 1998 while control groups were not initiated into the program until
2000.

1.3. Data. Households in both groups were surveyed over five rounds. First, households
were surveyed as part of the census that served as the basis of the HPS, and then they were
surveyed again in May 1998 prior to treatment-group program initiation, and then follow-up
surveys were conducted four more times at approximate six month intervals thereafter. These
surveys asked household demographic and socioeconomic characteristics, as well as questions
about health care utilization and educational attendance. We focus on the follow-up surveys
between treatment, October 1998 and November 1999. Summary statistics for the matched
data sample of households present in both periods are presented in Table 1. These data
contain information on approximately 15,000 households over the entire experiment period.

1.4. Outcomes. We focus on three outcomes of interest that we focus on in this application
are changes in per-capita monthly consumption, changes in health status of children, and
changes in educational attendance of children. In the terminology of the above theory section,
these outcomes are our ∆gj(xi), where j = 3. All of these are plausibly target outcomes that
a social planner or government might prioritize when designing a welfare program, although
only the latter two outcomes were explicitly prioritized by the Mexican federal government as
part of the official goals of the program. Previous studies have estimated significant treatment
impacts of PROGRESA for all three of these outcomes using the same data sample that
we explore here (John Hoddinott [2004], Emmanuel Skoufias [2008], Simone Boyce [2003],
Djebbari and Smith [2008]).

2. Estimation. To estimate the potentially heterogeneous impacts of PROGRESA on our
set of outcome variables, we follow Djebbari and Smith [2008] and estimate a regression
equation that allows the effect of treatment to vary by household characteristics. (This step
can also be done using a more sophisticated model such as Wager and Athey [2018].) We allow
treatment to vary by education level of household head, indigenous status of houshold head,
gender of household head, a binary indicator for household head working in the agricultural
sector, the age of the household head, number of children, number of school-age children,
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Table 1. Descriptive Statistics

October 1998 mean November 1999 mean
Monthly average per capita consumption (pesos) 234.508 178.185
Assigned to treatment group 0.606 0.606
Household poverty score (1997) 695.700 695.700
Village marginality index (1997) 0.470 0.470

Household size 5.75 5.75
... Number of children less than 2 years old 0.692 0.702
... Number of children 3-5 years old 0.577 0.565
... Number of children 6-10 years old 0.948 0.928
... Number of boys 11-14 years old 0.356 0.350
... Number of girls 11-14 years old 0.338 0.332
... Number of boys 15-19 years old 0.318 0.316
... Number of girls 15-19 years old 0.310 0.308
... Number of men 20-34 years old 0.492 0.500
... Number of women 20-34 years old 0.5497 0.555
... Number of men 35-54 years old 0.444 0.445
... Number of women 35-54 years old 0.438 0.439
... Number of men at least 55 years old 0.253 0.254
... Number of women at least 55 years old 0.251 0.253

Head of household:
... Is male 0.902 0.902
... Is an agricultural worker 0.596 0.600
... Education (in years) 2.703 2.704
... Is indigenous 0.386 0.386
... Age 45.47 45.50

Number of days a child is sick 1.310 0.857
Number of days a child misses school 0.567 0.249

N 14949 14949

and total household size. For clarity we focus on only outcomes in 1999.7 Formally, we define
Di ∈ {0, 1} as a dummy variable for treatment status of household i, Yi,1999 as the outcome
variable as measured in 1999, Xi,1998 as the vector of covariates as measured in 1998, and
estimate the following regression:

(3) ∆Yi,1999 = β0 + βXXi,1998 + (βD + βDXXi,1998)Di + εi

This model allows post period (1999) outcomes to differ systematically according to
household covariates, and additionally allows the treatment effect of PROGRESA to differ

7We also depart from Djebbari and Smith [2008] in not including poverty scores and village marginality index
or their respective interactions in the list of covariates, to avoid potention correlated errors from using these
rankings in both the TE estimates and in the preference-learning method.



(MACHINE) LEARNING WHAT GOVERNMENTS VALUE 12

across households according to their respective covariate profiles, as captured in the βD and
βDX variables.

We construct our variables for treatment effects from the predicted values from our
estimated formula (3), as

∆ĝ(xi) = (β̂D + β̂DXXi)

We use these estimated treatment effects ∆ĝ(xi), and search for welfare weight parameters
β̂, impact weight parameters λ̂, and constant C that minimize the loss function (Equation
2). We allow household priority weights µ(xi) to vary over education levels of the household
heads, the size of households, the indigenous status of the household head, and the level of
non-food consumption in October 1998 (a proxy for economic status). The final estimates of
these vectors then serve as our estimates of the implied welfare weighting across covariates
and impact weighting across outcomes, as inferred from the ranking of social priority and
the distribution of program impacts across households.

3. Estimates.

3.1. Treatment Effects. To begin with, we present the results from the estimation of hetero-
geneous treatment effects from equation (2). We estimate considerable heterogeneity across
households for all three outcomes, and find modest treatment effects on average for all three.

On average, PROGRESA is estimated to have increased household monthly consumption
by 12.21 pesos, to have reduced the number of sick days per child by 0.064, and reduced the
number of school days missed per child by 0.10.8

We next report heterogeneous treatment effects. The overall distributions of treatment
effects by outcome are presented in Figure 2, and coefficient estimates are presented in Table
2, with standard errors in parentheses. Similar to Djebbari and Smith [2008], we find that
consumption treatment impacts are higher for households with indigenous status and male
heads of households, and lower for larger households.

3.2. Welfare Weight and Impact Weight Estimates. We then combine these heterogeneous
treatment effect estimates ∆ĝj(xi) with the household poverty scores as our priority ranking
over households, z(.), and estimate welfare weights and impact weights using the preference-
learning method. While final eligibility for PROGRESA was determined by a combination
of village marginality index and poverty scores, within each village, poverty scores were the
basis for determining a household’s treatment versus non-treatment status, and as such, we
use them as our preferred ranking.

Estimates are presented in column 1 of Table 3.

8Both “number of days sick” and “number of school days missed” refer to the single month before the survey
was conducted. In the case of the Nov. 1999 survey, this reflects the number of days in October for either
outcome.
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Figure 2. Distribution of Estimated Treatment Effects
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Table 2. Treatment Effect Coefficient Estimates

Consumption Health Schooling
(Monthly avg per-
person, pesos)

(sick days per
child)

(missed school
days per child)

Treatment 5.0746
(16.812)

-0.5809
(0.423)

-0.1985
(0.192)

Treatment X Num Young Children (< 5 y.o.) 1.0894
(2.702)

-0.0787
(0.065)

-0.0467
(0.028)

Treatment X Num Children (6-16 y.o.) 5.4304
(2.577)

-0.0917
(0.06)

0.0018
(0.028)

Treatment X Num Elders (> 55 y.o.) -9.7668
(4.742)

-0.0234
(0.128)

-0.0011
(0.052)

Treatment X Total Household Size -3.1224
(1.934)

0.0877
(0.05)

0.0272
(0.021)

Treatment X Head Education -0.6038
(1.059)

-0.0014
(0.024)

-0.0024
(0.011)

Treatment X Indigenous Status 4.2948
(5.048)

0.1319
(0.121)

0.001
(0.054)

Treatment X Male Head of Household 30.9864
(9.002)

0.2982
(0.262)

0.0192
(0.103)

Treatment X Head of HH Agricultural Worker -7.1956
(5.364)

-0.1568
(0.129)

-0.0595
(0.058)

Treatment X Age of Household Head -0.0353
(0.254)

0.0011
(0.007)

0.0027
(0.003)

Treatment X Household Income in 1997 -0.7145
(1.44)

0.0052
(0.035)

-0.0185
(0.016)

We find that the government would have placed 8.0% higher value on the median household
if they were of indigenous status, 16.9% higher value for each additional household member,
0.3% lower value for each additional peso of non-food per person average consumption, and
0.6% lower value for each additional year of household head education.

We estimate that the government’s allocations are consistent with valuing each child
sick day as 101.98 pesos of consumption, and each missed school days as 108.07 pesos
of consumption. Across impacts, 70% of the utility weight is derived through intrinsic
valuation of the household, and 30% through valuation of changes in outcomes: for the
median household, 14% of utility weight is derived through consumption, as compared to 9%
through schooling impacts and 6% through health impacts.

These valuations can be compared against other estimates of the value of health and
education:

If we assume a mapping of sick days to disability adjusted life years (DALYs) based simply
on the number of days lost to sickness, then the government’s allocation implies a valuation
of 101.98 ∗ 365 = 37222.7 pesos or $3722.27 per DALY. This valuation is roughly thirty-
seven times larger than standard recommendations for cost-effective health interventions
[Laxminarayan et al., 2006]. It is considerably higher than the revealed-preference inferences
of valuations per DALY of $23.68 that Kremer et al. [2011] infer for Kenyan households,
based on how far they are willing to walk for clean water.
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The government’s allocation implies a value of 108.07 ∗ 180 = 19452.6 pesos or $1945.26
per missed year of school. This is also about an order of magnitude larger than a back-of-the-
envelope calculation of the value of each school year: based on a review of multiple studies,
Psacharopoulos and Patrinos [2018] suggest a 9% average return to a year of schooling. If we
proxy for income by consumption levels, 9% of average consumption in 1999 is approximately
equal to 16 pesos. Assuming a lifetime of 40 years of work, with later years discounted at
a rate of 3%, this corresponds to lifetime present-discounted earnings of 424.91 pesos per
missed year of school.

4. Counterfactuals. With these estimates in hand, we compare the estimates from the
government allocation to counterfactual allocations.

4.1. Alternate welfare weights. In columns 2-3 of Table 3, we assess the scores and outcomes
that result when using the empirically estimated impact weights but alternate welfare weights.
We present the implied distribution of the z′(.) ranking, as described by a linear regression
of the implied z′(.) over the four covariate dimensions inspected in the model. We report the
coefficients of this linear regression over the constructed z′(.) with αk, for each covariate k.

When welfare weights are set equal across households (column 2), the resulting score puts
much more weight on the measures of household size and household age composition relative
to the other variables. The effective priority ranking no longer positively correlates with
indigenous status as well.

When welfare weights are set to order households by income (column 3), the resulting
score sets positive weight on the number of elder household members and negative weight on
the number of children, as well as a larger negative weight on education.

4.2. Technocratic impact weights. In columns 4-5 of Table 3, we keep the original welfare
weights but use assumed technocratic impact weights. We assume 50 pesos per DALY and
roughly 16 pesos per missed school day, and an assumption that the consumption increase is
permanent, so that the present-value discounted weight on each peso is roughly 70.

The z′(.) ranking implied by these weights covaries more tightly with poverty and indigenous
status, and covaries inversely with household size, but otherwise appears broadly similar.9

By contrast, changing the household covariate welfare weights to an equal weighting across
households so that µ(xi) ≡ 1 leads to more weight on the number of elders in the household.

9Simone Boyce [2003] find that PROGRESA reduces childhood illness rates by roughly 25%; as the average
sick day impact of PROGRESA is 0.032, we make the very strong assumptions that a 0.032 reduction in
average sick days thereby corresponds to a reduction in illness rates of 25%, and that a 25% reduction in
illness rates corresponds to an increase in average DALY of 0.25. We thereby deduce that a reduction of 1.0
in average sick days would correspond to an increase in average DALY of 6.9, which on the very low-end
would cost roughly $10 for an intervention, leading to a value of $69. We round down to account for the
potential overestimated value of reduced illness rates in terms of DALY.
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4.3. Focus on different outcomes. In columns 6-8 of Table 3, we present alternative specifi-
cations that reset impact weights to be entirely determined by one of the three outcomes
inspected. When the impact weights are determined entirely by schooling effects, z′(.)
covaries positively with income, education, and indigenous status; when the impact weights
are determined entirely by consumption outcomes, z′(.) covaries negatively with education
and income and positively with indigenous status; when impact weights are determined by
health outcomes, z′(.) covaries negatively with all three.

4.4. An alternative government scoring rule. In column 9 of Table 3, we present the weight
estimates of an alternative specification used by the government. After 2003, the Mexican
government began using a different priority ranking that increased the priority of older,
childless households [Skoufias et al., 1999, 2001]. In this ‘densified’ ranking, Village Marginality
Index (VMI) mattered more and poverty scores less relative to when the program evaluation
was begun; originally, only 50% of households within eligible communities were eligible for
the program, but after the change, roughly 80% of households were eligible. We approximate
the change in ranking from this reordering by setting z(.) to the VMI instead of poverty
scores.

This rule actually places more welfare weight on richer households (for the median
household, 0.9% higher value for each additional peso of non-food per person average
consumption), as well as higher priority on indigenous status of households (35.8% higher
value on the median household), and similar priority for household size (12.3% higher value
for each additional household member).

The impact weights on health outcomes are about 20% higher, estimated at 125.41 pesos
for each fewer sick day per child, while the impact weights on schooling outcomes are 40%
lower, estimated at 60.85 pesos for each fewer missed school day per child. Overall, however,
the biggest change is the relative increase of the constant term, leading to a shrinking weight
of all outcomes in the total welfare calculation: for the median household, now 85% of
total utility summation derives through the constant term / intrinsic valuation, 3% through
schooling impacts, 4% through health impacts, and 7.8% through consumption impacts.

In this way, we compare how the implicit ranking from different specifications of welfare
weights and impact weights changes as we change the weights. We also identify the group
that would have received treatment status under these alternative allocations and present
counterfactual average outcomes in 1999 among all households under an alternative treatment
assignment regime, by constructing predicted values if the top 60% of the constructed priority
ranking had received treatment.

The z′(.) distributions inferred from the alternative specifications are broadly similar
except in the differences implied by their weights on covariates: under the udpated ranking,
the z′(.) covaries with indigenous status almost three times as much, and covaries positively
with higher-income households.
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Table 4. Weight Estimates under Coarse Data Conditions

z(.) : Poverty Score Binary
∆gj(xi): Heterog. Heterog.

Welfare weights
βHHSize 3.815 1.979

βEduc -0.156 -0.074

β1997Inc. -0.236 -0.052

βIndigenous 9.866 5.308

βNumElders 2.61 2.014

βNumChildren 4.564 2.5120

Impact weights
λConsumption 1.0 1

λHealth -101.98 -88.126

λSchooling -108.069 -117.127

C 77.165 68.87

N 14949 14949

5. Performance in Settings with Coarser Data.

5.1. If we observe final allocations, not a score. In many cases, researchers may only have
access to a binary z(.) that connotes treatment eligibility. We demonstrate how our method
can be applied by estimating our main specification with a binary indicator of above- or
below-median poverty score. Welfare weight estimates from this lower-information z(.) are
presented in column 2 of Table 4, where column 1 present the standard specification results.
With the exception of the impact weight on health, the relative sizes of the estimated weights
are strikingly similar between these two columns, demonstrating the method’s viability in
situations where precise ranking data is limited or unavailable.

6. Conclusion

While economists reason about primitives of utility and welfare weights, policy discussions
commonly revolve instead around the mechanics of implementation. This paper demonstrates
how heterogeneous treatment effect estimates can be used to bridge between these two
conceptions. We imagine this framework could be used in several ways. First, it could be
used to characterise existing allocations, to provide an indication of the revealed preferences
of the policymakers. This, in turn, provides an ex-post auditing mechanism that can help
hold policymakers accountable for past transfers – and in particular, to evaluate whether the
implemented allocation reflects the stated goals of the policy. Perhaps most importantly, this
approach can be used to amend existing policies and guide future allocations. In particular,
it can demonstrate how different priorities over welfare outcomes and population subgroups
would produce different allocations, and quantifies the welfare impacts of these adjustments.
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7. Appendix

1. Remarks about the functional form for Loss(β, λ,xi). We design Loss(β, λ,xi)

based on binary indicator functions, rather than on the squared loss, because the penalization
weights in a squared loss function for Loss(β, λ,xi) may otherwise be asymmetric, leading
to systematic misestimation of λ̂.

For ease of explanation, consider the ideal case where we know the true welfare weights
µ(xi) and where j = 2, and so λ2 = 1− λ1. We are therefore only attempting to recover a
single parameter, λ1. Using a squared loss formula for Loss(β, λ,xi), we would have

Loss(β, λ,xi) = (µ(xi) ∗ (λ1∆g1(xi) + (1− λ1)∆g2(xi))− µ(xj) ∗ (λ1∆g1(xj) + (1− λ1)∆g2(xj)))
2

if µ(xi) ∗ (λ1∆g1(xi) + (1− λ1)∆g2(xi)) < µ(xj) ∗ (λ1∆g1(xj) + (1− λ1)∆g2(xj)) and 0
otherwise. (z(xi) > z(xj), here.) Rearranging terms, this becomes

Loss(β, λ,xi) = (λ1 (µ(xi)∆g1(xi)− µ(xj)∆g1(xj) + µ(xj)∆g2(xj)− µ(xi)∆g2(xi))

+µ(xi)∆g2(xi)− µ(xj)∆g2(xj))
2

when loss is positive. The penalization weights for λ1 are therefore functionally being
determined by the relative values of µ(xi)∆g1(xi) − µ(xj)∆g1(xj) and µ(xj)∆g2(xj) −
µ(xi)∆g2(xi). This is easiest to see in the extreme cases where λ1 = 1 or λ1 = 0. Then

Loss(β, λ,xi) = (µ(xi)∆g1(xi)− µ(xj)∆g1(xj))
2

or

Loss(β, λ,xi) = (µ(xi)∆g2(xi)− µ(xj)∆g2(xj))
2

respectively.
This is where the problem arises: the relative sizes of µ(xi)∆g1(xi)− µ(xj)∆g1(xj) and

µ(xj)∆g2(xj)− µ(xi)∆g2(xi) may be unequal for reasons unrelated to specification of λ1,

and if so, they may bias estimation of λ1 that uses the above loss function. For example, if
∆g2(.) is more tightly positively correlated with µ(.) for any given xi than ∆g1(.) is, then
the difference µ(xi)∆g2(xi)− µ(xj)∆g2(xj) may also be systematically larger, which means
that values of λ̂1 that are ’too small’ will be penalized more than values of λ̂1 that are ’too
large’ and the optimizer may prefer a final estimate of λ̂1 > λ1, assuming that there are
observations with positive loss on either side.10 Even in the measure-zero case where the
optimization algorithm starts on the true λ1, if there are equal violations of the inequality

10E.g., considering λ1 = 0, then in cases of positive loss we have µ(xi)∆g2(xi) < µ(xj)∆g2(xj). If µ(xi) = 1,
then Lossλ = (µ(xi)∆g2(xi) − µ(xj)∆g2(xj))

2 = (∆g2(xi) − ∆g2(xj))
2. But if µ(xi) = ∆g2(xi), then

Lossλ =
(
∆g2(xi)

2 − ∆g2(xj)
2
)2. This may be smaller or larger, depending, but in either case, the penalty

from loss for misspecification of λ̂ will be asymmetrically different.
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in both directions due to noise, loss function minimization may prefer estimates of λ̂1 that
are smaller or larger than λ1 in order to shrink the loss from the direction with the outsized
’penalization weight’. In Monte Carlo simulations, we have confirmed that this effect can
severely bias estimated λ̂ away from true λ when using squared loss at this step.

Therefore, we use a loss function based on indicator functions, in order to completely
sidestep this issue of endogenously asymmetric penalization weights:

Loss(λ, xi) = 1δi(β)<δi′ (β) +
∑
j

1∆gj(xi)δi(β)<∆gj(xi′ )δi′ (β) +
∑
k

∗1xikδi(β)<xi′kδi′ (β)

where δi(β) represents βxi ·
(∑

j λj∆gj(xi)
)
.

Monte Carlo simulations confirm that the above loss function accurately recovers estimated
λ̂ that are close to true λ values under a wide variety of specifications and parameter values.
In particular, the above loss function functions well even in cases where µ(.) is much more
correlated with one treatment effect than another.


