Poverty, Seasonal Scarcity and Exchange Asymmetries

Psychology & Economics of Poverty Convening

May 17th, 2019

Kelsey Jack, UC Santa Barbara

with Dietmar Fehr and Günther Fink
Scarcity and decision-making

Growing literature suggests a link between scarcity and decision-making

- Potentially mediated by cognitive function (Mani et al. 2013, Mullainathan and Shafir 2013)
- Depending on decision environment, scarcity could
 - improve (e.g., Goldin and Homonoff 2013) or
 - worsen (e.g., Mani et al. 2013) decision-making
This paper

Provide causal evidence on

1. the relationship between scarcity and decision-making
2. the relationship between scarcity and cognitive function
This paper

Provide causal evidence on

1. the relationship between scarcity and decision-making
2. the relationship between scarcity and cognitive function

We do this by

• measuring ~6,000 decisions by ~3,000 farmers in Zambia
• using panel data: individuals observed up to 3 times over 15 months
• leveraging both natural and design-based sources of variation in scarcity
3 necessary ingredients

1. Variation in scarcity
2. Measure of decision-making
3. Measure of cognitive function
Ingredient 1: Variation in scarcity
Both design-based and natural sources of variation

1. Cross-sectional variation in wealth
2. Seasonal variation in liquidity
 • Households receive entire annual income at harvest
 • Measure decision making before and after harvest
 • Similar variation to Mani et al. (2013) or Carvalho et al. (2016)

3. Exogenous liquidity shock during hungry season
 • Random sub-set of villages received consumption loan (Fink et al. 2018)

4. Variation in value of the items traded
 • High stakes decisions offer alternative take on scarcity
Ingredient 2: Measure of decision-making

The endowment effect

People place more value on things they already have (Knetsch 1989, Kahneman et al. 1990)

- Empirically: Unwillingness to trade endowed good for another good → “exchange asymmetry”

- Often explained by loss aversion (Ericson and Fuster 2014)
- Extensive laboratory literature, highly controversial (e.g., Plott and Zeiller 2007)
Ingredient 3: Measure of cognitive function

Multiple dimensions of cognitive function may be affected by scarcity (Dean et al. 2017)

We focus on two (following Mani et al. 2013)

1. Fluid intelligence
 • Measurement: Raven’s Progressive Matrices

2. Executive function
 • Measurement: Numerical Stroops Test
Study setting: Chipata District, Zambia

Rural, agricultural households

- $N = 3,139$: “small-scale” (<12 acres) farmers
- Annual income: ~600 USD or < 1 USD / person / day
- Face “hungry season” before each harvest
Data collection
Embed trading experiments in each survey round
Implementation Measuring decision-making

Standard survey compensation: Washing powder ("Boom")

Our modification:

- 2 equally valued goods
- Randomly assign one good halfway through survey
- Surveyor offers opportunity to trade for other item at the end

Neoclassical prediction: 1/2 of subjects should trade
Implementation Measuring decision-making

Standard survey compensation: Washing powder ("Boom")

Our modification:
- 2 equally valued goods
- Randomly assign one good halfway through survey
- Surveyor offers opportunity to trade for other item at the end

Neoclassical prediction: 1/2 of subjects should trade

Experimental variation:
- Vary item pairs (including cash) and high value pair worth 5x daily wage
- Randomly phase subjects in across survey rounds
- Vary scripts, assignment procedures, other features
Results

Are exchange asymmetries relevant in a setting with poor subjects and high value trades?
Are exchange asymmetries relevant in our context?

Test: \(\text{Pr(\text{trade})} = 0.5 \)

Overall: \(\text{Pr(\text{trade})} = 0.34 \)
Are results robust?

<table>
<thead>
<tr>
<th></th>
<th>Pr(trade)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lottery</td>
<td>Timing</td>
</tr>
<tr>
<td></td>
<td>-0.007</td>
<td>-0.012</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.034)</td>
</tr>
<tr>
<td></td>
<td>0.019</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.039)</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.034)</td>
</tr>
<tr>
<td></td>
<td>-0.040</td>
<td>-0.035</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>Controls</td>
<td>round FE</td>
<td>round + hh + item</td>
</tr>
<tr>
<td>Observations</td>
<td>5172</td>
<td>5171</td>
</tr>
</tbody>
</table>
Results

Are exchange asymmetries sensitive to scarcity within this context?
Are asymmetries sensitive to scarcity?

Pr(trade) by asset quintile

Correlation between trading probability and baseline wealth

Higher trading probability among poorer households

→ Scarcity improves decision-making
Are asymmetries sensitive to scarcity?

Pr(trade) by season

Controlling for Individual fixed effects, experience

Higher trading probability during hungry season

→ Scarcity improves decision-making
Are asymmetries sensitive to scarcity?

Pr(trade) by time since loan drop-off

Hungry season only; Scarcity increasing in time since loan drop-off

Lower trading probability immediately after loan drop off

→ Scarcity improves decision-making
Are asymmetries sensitive to scarcity?
Pr(trade) by item pair value

Higher trading probability when stakes are high

→ Scarcity improves decision-making
Results

Does cognitive function mediate the relationship between scarcity and decision-making?
Scarcity \rightarrow Cognitive function \rightarrow Decision-making?

Consider three main measures:

- Raven’s Progressive Matrices: Fluid intelligence
- Numerical Stroops Test: Congruent task (attention)
- Numerical Stroops Test: Incongruent task (executive function)

All three may be important for trading
Scarcity \rightarrow Cognitive function \rightarrow Decision-making?

Scarcity \rightarrow Cognitive function (z-scores)

Correlation between baseline assets and cognitive test scores; Higher score = better performance
Poverty, Seasonal Scarcity and Exchange Asymmetries

Scarcity \rightarrow Cognitive function \rightarrow Decision-making?

Scarcity \rightarrow Cognitive function (z-scores)

Higher score = better performance

Conditional on individual fixed effects and experience controls
Scarcity → Cognitive function → Decision-making?
Scarcity → Cognitive function (z-scores)

Higher score = better performance

Conditional on experience controls, individual and household covariates
Scarcity → Cognitive function → Decision-making?
Cognitive function → Decision-making

<table>
<thead>
<tr>
<th>Cognitive measure</th>
<th>Outcome: Pr(trade)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ravens</td>
<td>Stroop 2</td>
</tr>
<tr>
<td>Cognitive measure</td>
<td>0.006 (0.015)</td>
<td>0.036* (0.019)</td>
</tr>
</tbody>
</table>

Conditional on individual fixed effects, round and experience controls
Summary

We investigate the link between scarcity and exchange asymmetries

- Contribute to growing literature on psychology of the poor
- Contribute to ongoing to debate about relevance of decision biases in the field

Magnitude of decision bias does depend on economic circumstances

- Scarcity *improves* decision-making
 - Within-subject (across season) and between subject (within season)
 - No evidence that cognitive function drives decision making
 - Specific task: immediate payoff, salient trade-off
Discussion
Reconciling our results with the literature

1. Why do we see improvements in decision-making under scarcity?
 - Different measure of decision-making, different mechanisms
 - Fewer confounds than prior studies
 - Different population, setting, etc.

2. Why don’t we see a consistent relationship between scarcity and cognitive function?
 - Different measures of cognitive function measure different things
 - Scarcity may deplete some functions while enhancing others
 - Also, scarcity comes in different forms with different implications for cognition