Outline

• What is Impact Evaluation
• Causal Inference
• Counterfactuals
• Experimental Methods
• Quasi Experimental Methods
• Case Study
Monitoring and Evaluation (M&E)

A continuous process of collecting information

• to compare how well a project, strategy of policy is performing against expected results, and
• to inform implementation and program management.
Impact Evaluation (IE)

The assessment of the causal effect of a project, program, or policy on beneficiary outcomes, by estimating the change in outcomes attributable to the intervention.
Step 1: Challenge

We start with a development problem......

• More than 10% of children in Paraguay suffer delays in their physical, emotional or cognitive development

• Diarrhea is the second leading cause of child mortality

• School enrolment in Afghanistan is 54%
Step 2: Outcome

We determine a desired outcome we want to achieve….

• Decrease cognitive development delays by half
• Reduce diarrhea incidence by 20%
• Achieve universal primary enrollment
Step 3. Intervention

We propose a potential solution, in the form of a program or policy....

• Develop an early child development curriculum for caretakers

• Provide access to improved water and sanitation

• Establish a conditional cash transfer (linked to school enrolment)
Step 4. Evaluating impact

Determine the impact of the intervention....

• Did the inclusion of an early child development curriculum increase cognitive development?
• What was the effect of providing access to water and sanitation on children’s health?
• Are conditional cash transfers effective in increasing school enrolment?
More impact evaluation questions

• What is the effect of information on risky sexual behavior and HIV prevalence?
• Does contracting out primary health care lead to an increase in access and quality?
• Do bonuses to sales people generate more revenue than consumer price discounts?
• Do micro loans increase the productivity of small entrepreneurs?
Additional questions answered

- What is the effect of different sub-components of a program on specific outcomes?
- What is the right level of subsidy for a service?
- How would outcomes be different if the program design changed?
- Is the program cost-effective?

Traditional M&E cannot answer these.
Objetives of impact evaluation

- Determine if a program had *impact*, by measuring the *causal effect* between an intervention and an outcome of interest
- Estimate the *level* of impact
- Compare *real impact* with the *expected impact* at the time of designing the intervention
- Determine *adequate intensity* of intervention
- Compare *differential impact* among geographical areas, communities, or interventions
Estimating Causal Inference: How Do We Evaluate?
How do we evaluate?

Estimate the causal effect (α) of an intervention (T) on an outcome (Y).

(α) = Effect, Impact
(T) = Program, Policy, Intervention, Treatment
(Y) = Outcome, Measure, Indicator

Example: What is the effect of an ECD program (T) on cognitive development in kids under 5 (Y)?
Formally

Question:
What is the impact of (T) on (Y)?

Answer:
\[\alpha = [Y_i \mid T] - [Y_i \mid C] \]
Problem of incomplete information

\[\alpha = [Y_i | T] - [Y_i | C] \]

For a program beneficiary \(i \):
- Observe:
 \[[Y_i | T] \]: diarrhea incidence (Y) of beneficiary \(i \) having participated in the program (T)
- But do NOT observe:
 \[[Y_i | C] \]: diarrhea incidence (Y) of beneficiary \(i \) not having participated in the program
Solution

Estimate what would have happened with Y in the absence of T.

We call that ….. **Counterfactual**

The key for a good impact evaluation is a valid **counterfactual**!
Counterfactuals: How Do We Construct a Valid Counterfactual?
Counterfactual criteria

- Treated and Counterfactual
 1. Have identical characteristics
 2. Only difference is benefiting from the intervention

- No other reason for differences in outcomes of treated and counterfactual.
- Only reason for the difference in outcomes is due to the intervention.
Example: What is the impact of... giving Mr. Nice

ECD

Cognitive development (Batelle & Denver)

\((T)\)

\((Y)?\)
The perfect “Clon”

Mr. Nice

“Clon”

\[E[Y_i|T] = 620 \]

\[E[Y_i|C] = 600 \]

IMPACT = 620 − 600 = 20 points
Using statistics

Treatment

Comparison

\[\hat{E}[Y_i|T] = 620 \text{ puntos} \]

\[\hat{E}[Y_i|C] = 600 \text{ puntos} \]

IMPACT = 620 – 600 = 20 points
Estimating impact

\[\alpha = E[Y_i \mid T] - E[Y_i \mid C] \]

Observe \(E[Y_i \mid T] \)
Outcome \((Y)\) under treatment \((T)\)

Estimate \(E[Y_i \mid C] \)
Counterfactual using Control group

IMPACT = Outcome Treated Group \((T)\) - Outcome Control Group \((C)\)
Two counterfeit counterfactuals

- Before and After
 - Same individual or group before and after the treatment

- Those not enrolled
 - Those who did not enroll in (were not offered) the program versus those who did (were)
Case 1: Before and After

What is the impact of ECD (T) on scores (Y)?

IMPACT = A – B = 33
Case 1: What is the problem?

Recibe nutritional complement = C
- “Real” impact = A - C
- A-B *overestimates* impact

Start working = D
- “Real” impact = A - D
- A-B *underestimates* impact

Pre-program condition does NOT control for external factors that vary over time
Case 2. Participants vs Non-Participants

Compare versus non-elegible beneficiaries of a programa

- Treatment group: Registered / Participants
- Control group: Non-registered / Non-participants

They chose NOT to participate

Are NOT eligible to participate

Self-selection bias

- Characteristics of the population are correlated with de their condition to participate (T) and their outcomes (Y)

We can control for observable characteristics

But we can’t control for unobservables
Remember

Pre-post

Compares: Same unity of observation before and after receiving T.
Problem: Other factors can occur over time that may affect the final outcome

Self-selected

Compares: Different unity of observation that opts to whether receive T.
Problem: Self-selection bias makes groups not comparable

Both counterfactuals can result in a biased estimate of impact
Summary

• Impact evaluation measures the causal effect between an intervention (T) and an outcome (Y).

• The counterfactual is the theoretical concept of a program beneficiary without the benefit or treatment. Can NOT be observed!

• A counterfactual is estimated using a control group

• Program impact is the difference between the average outcome under treatment, and the counterfactual estimate, measured as the average outcome of the control group:

\[\alpha = E[Y_i|T] - E[Y_i|C] \]
Experimental Methods: Randomized Control Trials (RCTs)
Experiments/Random Assignment/RCTs

Allocation of intervention (T) through lottery or another random process...

- Generates two groups statistically identical

When do we randomize?

- **Oversuscription**: # elegibles > available resources
- **Innovation**: need rigorous evidence about the efficacy of the program / intervention

Advantages

- Gives all eligible units the same probability to receive the intervention (T)
- Selection criteria is ethical, quantitative, fair and transparent
- Produces the most accurate counterfactual and is intuitive
But how do we randomize?

1. Population
2. Sample
3. Treatment

- Externa validity
- Internal validity

[CEGA logo]
Unit of randomization

- Select depending on the program
 - Individual/Household
 - School/Health Center
 - Street/Block
 - Town/Community
 - District/Municipality/Region

- Keep in mind:
 - It’s necessary to select a “big enough” number of units to detect a minimum detectable effect: Statistical power
 - Spillovers / contamination
 - Operational and survey costs

Rule of thumb: always randomize to the smallest implementation unit possible.
Case: RCT

- ECD Program in Paraguay
- Unit of randomization: Student
- 500 Elegibles students

Randomization in two phases:
 - 250 students in pilot schools receive an ECD intervention starting in 2015
 - Treatment group
 - 250 students in the rest of the country continue with national strategy
 - Grupo Control
Case: RCT

| | Treatment group (Randomly assigned to treatment) | Counterfactual (Randomly assigned to comparison) | Impacto $\hat{E}[Y_i|T] - \hat{E}[Y_i|C]$ |
|------------------|---|---|---|
| **Baseline (2014)** Score (Y) | 587 | 586.9 | 0.1 |
| **Follow-up (2015)** Score (Y) | 620 | 600 | 20 |

Note: **statistically significant at 1%**
Comparing different treatments

- Conventional evaluation question:
 - What is the impact of a program (T) on an outcome (Y)?

- Other interesting questions:
 - How to optimize a program?
 - What is the optimal level of a benefit or treatment?
 - Why does a program work?
 - What is the impact of different sub-components of a program?

- Random assignment with different treatments:

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Low benefit</th>
<th>High benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1 Hour of training per week</td>
<td>3 Hours of training per week</td>
</tr>
</tbody>
</table>
Random assignment for two levels of benefits

1. Eligible population
2. Sample for evaluation
3. Random assignment (2 levels)

= Ineligible
= Eligible
Combined impact for two levels of benefits

- How do two benefits complement?
- Random assignment of a package of interventions:

<table>
<thead>
<tr>
<th>Intervention 1</th>
<th>Comparison</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention 2</td>
<td>Group A X</td>
<td>Group C</td>
</tr>
<tr>
<td>Comparison</td>
<td>Group B Training</td>
<td>Group D Training</td>
</tr>
<tr>
<td>Treatment</td>
<td>Group B Training</td>
<td>Group D Training</td>
</tr>
</tbody>
</table>

CEGA
Random assignment with multiple levels of intervention

1. Eligible population
2. Evaluation sample
3. Random assignment 1
4. Random assignment 2

= Ineligible
= Eligible

Training
Random Assignment

Random assignment of treatment to a large sample produces two groups statistically equivalents

Feasible in prospective evaluations when demand exceeds the supply of services or resources

We have a perfect “clon”!

Randomly assigned to treatment

Randomly assigned to comparison

Ideal for new or innovative interventions to test efficacy

Many programs comply with these condition (pilot programs)
Quasi Experimental Methods: Difference in Differences (DiD)
Diff-in-Diff (DiD)

Y = Girls exam score (percentage of correct answers)
P = Tutoring

<table>
<thead>
<tr>
<th></th>
<th>Enrolled/With tutoring</th>
<th>Not Enrolled/No tutoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>After</td>
<td>0.74</td>
<td>0.81</td>
</tr>
<tr>
<td>Before</td>
<td>0.60</td>
<td>0.78</td>
</tr>
<tr>
<td>Difference</td>
<td>+0.14</td>
<td>+0.03 = 0.11</td>
</tr>
</tbody>
</table>

\[\text{Diff-in-Diff: Impact} = (Y_{t1} - Y_{t0}) - (Y_{c1} - Y_{c0}) \]
Diff-in-Diff

Y = Girls exam score (percentage of correct answers)
P = Tutoring

\[\text{Diff-in-Diff: Impact} = (Y_{t1} - Y_{c1}) - (Y_{t0} - Y_{c0}) \]

<table>
<thead>
<tr>
<th></th>
<th>Enrolled/With tutoring</th>
<th>Not Enrolled/No tutoring</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>After</td>
<td>0.74</td>
<td>0.81</td>
<td>-0.07</td>
</tr>
<tr>
<td>Before</td>
<td>0.60</td>
<td>0.78</td>
<td>-0.18</td>
</tr>
</tbody>
</table>

0.11
\[\text{Impact} = (A - B) - (C - D) = (A - C) - (B - D) \]

\begin{align*}
\text{Exam score} \\
\text{B} = 0.60 \\
\text{C} = 0.81 \\
\text{D} = 0.78 \\
\text{T} = 0 \\
\text{T} = 1 \quad \text{Before} \\
\text{Enrolled} \\
\text{Impact} = 0.11 \\
\text{A} = 0.74 \\
\text{Not enrolled} \end{align*}
Impact = \((A-B)-(C-D) = (A-C)-(B-D)\)

- Exam score
 - Before: \(B = 0.60\)
 - After: \(C = 0.81\)
 - Enrolled: \(A = 0.74\)
 - Not enrolled: \(D = 0.78\)

- Time
 - \(T = 0\) Before
 - \(T = 1\) After

Impact = ?
Summary DiD

Difference-in-Differences

Difference-in-Differences combines *Enrolled & Not Enrolled* with *Before & After*.

Generate counterfactual for change in outcomes over time

Trends –slopes– are the same in treatments and comparisons (*Fundamental assumption*)

To test this, at least 3 observations in time are needed:
- 2 observations before
- 1 observation after.
Quasi Experimental Methods: Regression Discontinuity Design (RDD)
Regression Discontinuity Design (RDD)

We have a continuous eligibility index with a defined cut-off

- Households with a score \(\leq \) cutoff are eligible
- Households with a score \(> \) cutoff are not eligible
- Or vice-versa

Intuitive explanation of the method:

- Units just above the cut-off point are very similar to units just below it – *good comparison*.
- Compare outcomes \(Y \) for units just *above and below* the cut-off point.

For a discontinuity design, you need:
1) Continuous eligibility index
2) Clearly defines eligibility cut-off.
Examples of Eligibility Index/Score

Many social programs select beneficiaries using an index or score:

- **Anti-poverty Programs**: Targeted to households below a given poverty index/income
- **Pensions**: Targeted to population above a certain age
- **Education**: Scholarships targeted to students with high scores on standardized test
- **Agriculture**: Fertilizer program targeted to small farms less than given number of hectares
Case: Effect of fertilizer program on agriculture production

Goal
Improve agriculture production (rice yields) for small farmers

Method
• Farms with a score (Ha) of land ≤50 are small
• Farms with a score (Ha) of land >50 are not small

Intervention
Small farmers receive subsidies to purchase fertilizer
RDD Baseline

- Eligible
- Not eligible
RDD Post Intervention

Impact

Outcome

Score
Case: Discontinuity Design

- Eligibility for Progresa is based on national poverty index

- Household is poor if score ≤ 750

- Eligibility for Progresa:
 - Eligible=1 if score ≤ 750
 - Eligible=0 if score > 750
Case: Discontinuity Design
Score vs. consumption at Baseline–No treatment

![Graph showing consumption vs. fitted values for poverty index.](graph.png)
Case: Discontinuity Design

Score vs. consumption at Baseline—No treatment

Estimated impact on consumption (Y) **30.58**

(**) Significant at 1%
Summary RDD

Discontinuity Design requires continuous eligibility criteria with clear cut-off.

- Gives unbiased estimate of the treatment effect, but produces a local estimate:
 - Effect of the program around the cut-off point/discontinuity.
 - This is not always generalizable.

Power:
- Need many observations around the cut-off point.

- No need to exclude a group of eligible households/individuals from treatment.

- Can sometimes use it for programs that already ongoing.
Case Study: Handwashing with soap in Peru
Original intervention

ILM

Activities:
• Mass media campaign
• Promotional events
• Capacity building of agents
• Educational sessions
• HW promotion as a school curriculum
Revised intervention

Component: Mass Media

Activities:
- Mass media campaign
- Promotional events

Component: School and Community

Activities:
- Mass media campaign
- Capacity building of agents
- Educational sessions
- HW promotion as a school curriculum
Intervention design

195 provinces (universe)

40 provinces

40 districts

T1 (700 HH)

40 communities

40 districts

40 provinces

40 districts

40 communities

T2 (700 HH)

T2-Esc. (700 HH)

40 communities

C (700 HH)

C-Esc. (700 HH)

40 communities

40 districts
Results – Mass Media

Improved children’s health

Improved HW behavior among mothers and caretakers

Changes in beliefs, knowledge and availability

Exposure to HW with soap promotions

ILM (treatment)
Results – Community and School

- Improved children’s health
- Improved HW behavior among mothers and caretakers
- Changes in beliefs, knowledge and availability
- Exposure to HW with soap promotions
- ILM (treatment)
Advantages of randomization

Diarrhea (previous 7 days)
BASELINE

Control: 16.2%
Treatment: 16.7%

Diarrhea (previous 7 days)
ENDLINE

Control: 6.9%
Treatment: 6.4%
References

Alexandra Orsola-Vidal | aorsolavidal@berkeley.edu
Center for Effective Global Action | www.cega.org
University of California, Berkeley