Expected Discrimination and Job Search

Devis Angeli (UBC), Ieda Matavelli (UNSW), and Fernando Secco (UBC)
Motivation

We know employers discriminate against some groups (e.g. Kline et al. (2022), or see Neumark (2018); Rich (2014); Riach and Rich (2002) for reviews)
Motivation

We know employers discriminate against some groups (e.g. Kline et al. (2022), or see Neumark (2018); Rich (2014); Riach and Rich (2002) for reviews)

Effects of discrimination & optimal policies also depend on \textit{jobseekers’ reactions}

- Big role for beliefs
Motivation

We know employers discriminate against some groups (e.g. Kline et al. (2022), or see Neumark (2018); Rich (2014); Riach and Rich (2002) for reviews)

Effects of discrimination & optimal policies also depend on \textit{jobseekers’ reactions}

\begin{itemize}
\item Big role for beliefs
\end{itemize}

Expected discrimination can amplify the effects of employer discrimination

\begin{itemize}
\item May discourage applications, create stress
\end{itemize}
Motivation

We know employers discriminate against some groups (e.g. Kline et al. (2022), or see Neumark (2018); Rich (2014); Riach and Rich (2002) for reviews).

Effects of discrimination & optimal policies also depend on **jobseekers’ reactions**

- Big role for beliefs

Expected discrimination can amplify the effects of employer discrimination

- May discourage applications, create stress

This paper: field experiments on how expected discrimination affects **job search**
Context: Favelas in Rio de Janeiro

- Favelas are urban slums
 - Typically ruled by organized crime

- Formal jobs are desirable but rare in favelas

- Favela residents expect address-based discrimination

- Jobseekers in Maré, Manguinhos, and Jacarezinho interpret discrimination as a bundle
 - Loss of workdays due to police raids (74%), racism and cultural differences (68%, 67%), dislike of favela residents (65%)
This Paper

- Four field experiments to answer:

 What is the impact of expected discrimination on job-seeking behaviors?

 i) Job application decisions
 ii) Interview performance
This Paper

- Four field experiments to answer:

 What is the impact of expected discrimination on job-seeking behaviors?

 i) Job application decisions
 ii) Interview performance

- One “classic” audit study to get a baseline measure of discrimination
This Paper

- Four field experiments to answer:

 What is the impact of expected discrimination on job-seeking behaviors?

 i) Job application decisions
 ii) Interview performance

- One “classic” audit study to get a baseline measure of discrimination

- Three labor-supply-side experiments embedded in the following pipeline:

 Door-to-door survey in favelas → Apply for real sales jobs → Job interviews

 Our “HR firm”
This Paper

- Four field experiments to answer:

 What is the impact of expected discrimination on job-seeking behaviors?

 i) Job application decisions
 ii) Interview performance

- One “classic” audit study to get a baseline measure of discrimination

- Three labor-supply-side experiments embedded in the following pipeline:

 Door-to-door survey in favelas \rightarrow Apply for real sales jobs \rightarrow Job interviews \rightarrow Our “HR firm”

- Two experiments using a “blinding” policy, one testing a different intervention
Favela Jobseekers Expect Significant Anti-Favela Discrimination

- We asked jobseekers to predict the results of an audit study, in which we sent fictitious resumes with randomized addresses to 700 sales jobs.

- Median jobseeker expects a 50% discrimination rate.

- We find very similar callback rates (19.6% and 19.3%, p=0.38).
 - Does not imply that there is no discrimination.

- Most people are too pessimistic in relation to an objective benchmark.
Application Form Experiment (N=1,303)

- Does making address less visible encourage applicants?
- Main treatment: Make address not necessary for applying

Results

- Average null effects; ≈ 40% apply and ≈ 20% show up for interview
- But dropping address increases show up by 10pp for white jobseekers
- White jobseekers can more easily pass as non-favela residents
- Non-white jobseekers may expect discrimination either way
Application Form Experiment (N=1,303)

- Does making address less visible encourage applicants?

- Main treatment: Make address not necessary for applying

Results

- Average null effects; ≈40% apply and ≈20% show up for interview
- But dropping address increases show up by 10pp for white jobseekers
 - White jobseekers can more easily pass as non-favela residents
 - Non-white jobseekers may expect discrimination either way
Interview Experiment (N=422)

- All applicants are invited to interview at downtown office

- Receptionist confirms name, DOB, and address. Moments after, she says: “[...] the interviewer will only know:
 - your name” (Name-Only)
 - your name and address” (Name-and-Address)

- During interviews, interviewer only knows name

- Outcomes are 0-10 ratings of overall performance, nervousness, and professionalism
 - Evaluated by the interviewer and self-assessed (3 measures each)
 - Build an ICW index (Anderson, 2008) for each of the two
Candidates believed they did 0.17SD better when told that the interviewer would only know their name.

Larger effects on those who expected more discrimination, significant also on the interviewer’s assessment.

Believing you can suffer discrimination leads to worse performance:
- Effects seem to be mediated by a stress response
- Self-fulfilling prophecy

Effect of Name-Only on Interview Performance (SDs)
Jobseekers overestimate discrimination as measured in our audit study.

Reducing expected address visibility (blinding) only encourages white jobseekers.

Expected discrimination acts as a self-fulfilling prophecy at the interview stage.

To help us understand the results on application decisions and what other policies could prevent self-fulfilling prophecies, we designed an information experiment.
Information Experiment \((N = 690)\)

- Randomly reveal that we found little discrimination in the audit study
 - Outcomes: application decisions

Results

- Null average effect
- Encourages non-white jobseekers to apply (not statistically significant)
- But now white jobseekers are relatively **discouraged**
 - Low anti-favela discrimination should also mean low racial discrimination and low benefits from passing as a non-favela residents. So white jobseekers might expect more competition and feel discouraged

Beware of correlated sources of discrimination – intersectionality is hard
Conclusion/Policy Implications

- Expected discrimination can lead to a self-fulfilling prophecy in job interviews
 - Correcting overly pessimistic beliefs with information could help, but it discourages white jobseekers from applying

- We should be cautious about pre-interview “blinding” policies
 - Most of the sample (non-white jobseekers) was unaffected
 - These policies can have unintended consequences on firms (Behaghel et al., 2015; Agan and Starr, 2018; Doleac and Hansen, 2020)

- Blinding at interviews (e.g., Goldin and Rouse (2000)) might be more promising
 - It is important to consider all correlated stigmas
 - Technology such as AI-intermediated evaluations might help (Avery et al., 2023)
What Predicts Expected Discrimination?

Outcome is predicted % drop in callback rates if from favela

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some college (0/1)</td>
<td>5.076*</td>
<td>12.821***</td>
<td>(2.996)</td>
<td>(2.187)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completed regular high-school (0/1)</td>
<td>-3.573</td>
<td>6.569**</td>
<td>(5.024)</td>
<td>(2.998)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working now (0/1)</td>
<td>5.373**</td>
<td>5.520***</td>
<td>(2.417)</td>
<td>(1.935)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever worked (0/1)</td>
<td>-5.060**</td>
<td>-1.405</td>
<td>(2.560)</td>
<td>(2.034)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (0/1)</td>
<td>-4.113*</td>
<td>-3.329</td>
<td>(2.147)</td>
<td>(2.275)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White jobseeker (0/1)</td>
<td>-3.393</td>
<td>-2.615</td>
<td>(2.622)</td>
<td>(2.645)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>-0.099</td>
<td>0.051</td>
<td>(0.207)</td>
<td>(0.205)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High R</td>
<td>4.167*</td>
<td>7.383***</td>
<td>(2.194)</td>
<td>(2.150)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skill Index</td>
<td>5.718**</td>
<td>5.166***</td>
<td>(2.846)</td>
<td>(1.456)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations 2166 2167 2167 2167 2167 2167 2167 2167 2166 2167

*p < 0.1, ** p < 0.05, *** p < 0.01. Outcome is the implied discrimination rate, measured by the expected decrease in callbacks if a resume is from the favela (% decrease). Robust standard errors shown between parenthesis.
What Correlates with Race?
Outcome is a dummy for white

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some college (0/1)</td>
<td>0.078*</td>
<td>0.103***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.037)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completed regular high-school (0/1)</td>
<td>-0.016</td>
<td>0.023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.022)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working now (0/1)</td>
<td>-0.049**</td>
<td>-0.050***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever worked (0/1)</td>
<td>-0.018</td>
<td></td>
<td>-0.047**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td></td>
<td>(0.021)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (0/1)</td>
<td>0.023</td>
<td></td>
<td></td>
<td>0.031</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td></td>
<td></td>
<td>(0.020)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>-0.004***</td>
<td></td>
<td>-0.004***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td></td>
<td>(0.001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High R</td>
<td>0.027</td>
<td></td>
<td></td>
<td>0.025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td></td>
<td></td>
<td>(0.027)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skill Index</td>
<td>0.034*</td>
<td></td>
<td></td>
<td></td>
<td>0.029***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td></td>
<td></td>
<td></td>
<td>(0.011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expects > 50% disc in audit</td>
<td>-0.026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>2166</td>
<td>2167</td>
<td>2167</td>
<td>2167</td>
<td>2167</td>
<td>2167</td>
<td>2167</td>
<td>2167</td>
<td>2166</td>
<td>2167</td>
</tr>
</tbody>
</table>

* p<0.1, ** p<0.05, *** p<0.01. Robust standard errors shown between parenthesis.
What Predicts Application?

Average application rate is ≈40%

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some college (0/1)</td>
<td>0.248</td>
<td>-2.464</td>
<td>(4.475)</td>
<td>(3.976)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completed regular high-school (0/1)</td>
<td>-2.744</td>
<td>-1.599</td>
<td>(4.334)</td>
<td>(2.678)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working now (0/1)</td>
<td>-22.713***</td>
<td>-22.241***</td>
<td>(2.436)</td>
<td>(2.153)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever worked (0/1)</td>
<td>11.631***</td>
<td>-2.645</td>
<td>(2.793)</td>
<td>(2.463)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (0/1)</td>
<td>-6.646***</td>
<td>-7.442***</td>
<td>(2.268)</td>
<td>(2.293)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White jobseeker (0/1)</td>
<td>-0.307</td>
<td>1.405</td>
<td>(2.503)</td>
<td>(2.599)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>-0.894***</td>
<td>-0.958***</td>
<td>(0.181)</td>
<td>(0.166)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High R</td>
<td>-12.068***</td>
<td>-20.675***</td>
<td>(3.077)</td>
<td>(2.836)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skill Index</td>
<td>4.254**</td>
<td>0.069</td>
<td>(2.156)</td>
<td>(1.236)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expects > 50% disc in audit</td>
<td>1.283</td>
<td>1.064</td>
<td>(2.092)</td>
<td>(2.157)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>2166</td>
<td>2167</td>
<td>2167</td>
<td>2167</td>
<td>2167</td>
<td>2167</td>
<td>2167</td>
<td>2167</td>
<td>2166</td>
<td>2167</td>
<td>2167</td>
</tr>
</tbody>
</table>

* p<0.1, ** p<0.05, *** p<0.01. Outcome is the application dummy times 100. Robust standard errors shown between parenthesis.
Descriptives

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maré resident (0/1)</td>
<td>0.62</td>
<td>0.48</td>
<td>0</td>
<td>1</td>
<td>2,167</td>
</tr>
<tr>
<td>Jacarezinho resident (0/1)</td>
<td>0.19</td>
<td>0.39</td>
<td>0</td>
<td>1</td>
<td>2,167</td>
</tr>
<tr>
<td>Manguinhos resident (0/1)</td>
<td>0.19</td>
<td>0.39</td>
<td>0</td>
<td>1</td>
<td>2,167</td>
</tr>
<tr>
<td>Age</td>
<td>25.91</td>
<td>6.24</td>
<td>18</td>
<td>41</td>
<td>2,167</td>
</tr>
<tr>
<td>Male (0/1)</td>
<td>0.30</td>
<td>0.46</td>
<td>0</td>
<td>1</td>
<td>2,167</td>
</tr>
<tr>
<td>White jobseeker (0/1)</td>
<td>0.22</td>
<td>0.42</td>
<td>0</td>
<td>1</td>
<td>2,167</td>
</tr>
<tr>
<td>Some college (0/1)</td>
<td>0.08</td>
<td>0.27</td>
<td>0</td>
<td>1</td>
<td>2,167</td>
</tr>
<tr>
<td>Completed regular high-school (0/1)</td>
<td>0.80</td>
<td>0.40</td>
<td>0</td>
<td>1</td>
<td>2,167</td>
</tr>
<tr>
<td>Working now (0/1)</td>
<td>0.32</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
<td>2,167</td>
</tr>
<tr>
<td>Holds a formal job (0/1)</td>
<td>0.13</td>
<td>0.34</td>
<td>0</td>
<td>1</td>
<td>2,167</td>
</tr>
<tr>
<td>Ever worked (0/1)</td>
<td>0.75</td>
<td>0.43</td>
<td>0</td>
<td>1</td>
<td>2,167</td>
</tr>
<tr>
<td>Actively search last week (0/1)</td>
<td>0.49</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
<td>2,167</td>
</tr>
<tr>
<td>Microsoft Office Experience (0/1)</td>
<td>0.80</td>
<td>0.40</td>
<td>0</td>
<td>1</td>
<td>1,984</td>
</tr>
<tr>
<td>Surveyor-assessed comm skills (Likert scale, 0-5)</td>
<td>2.79</td>
<td>1.10</td>
<td>0</td>
<td>4</td>
<td>2,167</td>
</tr>
<tr>
<td>Math test score</td>
<td>6.96</td>
<td>2.50</td>
<td>0</td>
<td>17</td>
<td>2,167</td>
</tr>
<tr>
<td>Heard of people refused job/fired due to address (0/1)</td>
<td>0.32</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
<td>2,167</td>
</tr>
<tr>
<td>Believes has been refused job/fired due to address (0/1)</td>
<td>0.28</td>
<td>0.45</td>
<td>0</td>
<td>1</td>
<td>2,167</td>
</tr>
</tbody>
</table>
Heterogeneous Effects Sizes Are Robust to Adding Covariates

- Estimate $y_i = \alpha + \beta_{\text{Name-Only}_i} + \sum_j \gamma_j^{\text{Name-Only}_i} \times X_j^i + \nu_j X_j^i$ for different sets of covariates, including race and/or high expected discrimination.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name-Only</td>
<td>-0.11 (0.13)</td>
<td>0.02 (0.09)</td>
<td>-0.18 (0.14)</td>
<td>0.44 (0.46)</td>
<td>0.07 (0.09)</td>
<td>0.12* (0.07)</td>
<td>0.03 (0.10)</td>
<td>0.64* (0.37)</td>
</tr>
<tr>
<td>Name-Only ×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Exp. Disc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name-Only ×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White jobsee.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.19 (0.15)</td>
<td>0.19 (0.15)</td>
<td>0.17 (0.15)</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
</tr>
<tr>
<td>Other Interactions?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*p < 0.1, ** p < 0.05, *** p < 0.01. Other Interactions include skill, having completed regular high school, employment status, having ever worked, age, and a dummy for having reservation wage over R$1,500.
Heterogeneous Effects Sizes Are Robust to Adding Covariates

Estimate $y_i = \alpha + \beta_{\text{Name-Only}} + \sum_j \gamma_j \text{Name-Only} \times X_j + \nu_j X_j$ for different sets of covariates, including race and/or high expected discrimination

<table>
<thead>
<tr>
<th></th>
<th>(1) Interview-</th>
<th>(2) Interview-</th>
<th>(3) Interview-</th>
<th>(4) Interview-</th>
<th>(5) Self-</th>
<th>(6) Self-</th>
<th>(7) Self-</th>
<th>(8) Self-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
<td>assessed</td>
</tr>
<tr>
<td>Name-Only</td>
<td>-0.11</td>
<td>0.02</td>
<td>-0.18</td>
<td>0.44</td>
<td>0.07</td>
<td>0.12*</td>
<td>0.03</td>
<td>0.64*</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(0.09)</td>
<td>(0.14)</td>
<td>(0.46)</td>
<td>(0.09)</td>
<td>(0.07)</td>
<td>(0.10)</td>
<td>(0.37)</td>
</tr>
<tr>
<td>Name-Only ×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Exp. Disc.</td>
<td>0.33**</td>
<td>0.32*</td>
<td>0.24</td>
<td>0.16</td>
<td>0.16</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.17)</td>
<td>(0.16)</td>
<td>(0.15)</td>
<td>(0.13)</td>
<td>(0.13)</td>
<td>(0.13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name-Only ×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White jobsee.</td>
<td>0.29</td>
<td>0.29</td>
<td>0.31*</td>
<td>0.19</td>
<td>0.19</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.20)</td>
<td>(0.19)</td>
<td>(0.15)</td>
<td>(0.15)</td>
<td>(0.15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
</tr>
<tr>
<td>Other Interactions?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* p<0.1, ** p<0.05, *** p<0.01. Other Interactions include skill, having completed regular high school, employment status, having ever worked, age, and a dummy for having reservation wage over R$1,500.
Heterogeneous Effects Sizes Are Robust to Adding Covariates

Estimate $y_i = \alpha + \beta_{\text{Name-Only}_i} + \sum_j \gamma^{j}_{\text{Name-Only}_i} \times X^{j}_i + \nu^{j}_i X^{j}_i$ for different sets of covariates, including race and/or high expected discrimination

<table>
<thead>
<tr>
<th></th>
<th>(1) Interview-assessed performance</th>
<th>(2) Interview-assessed performance</th>
<th>(3) Interview-assessed performance</th>
<th>(4) Interview-assessed performance</th>
<th>(5) Self-assessed performance</th>
<th>(6) Self-assessed performance</th>
<th>(7) Self-assessed performance</th>
<th>(8) Self-assessed performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name-Only</td>
<td>-0.11 (0.13)</td>
<td>0.02 (0.09)</td>
<td>-0.18 (0.14)</td>
<td>0.44 (0.46)</td>
<td>0.07 (0.09)</td>
<td>0.12* (0.07)</td>
<td>0.03 (0.10)</td>
<td>0.64* (0.37)</td>
</tr>
<tr>
<td>$\text{Name-Only} \times \text{High Exp. Disc.}$</td>
<td>0.33** (0.17)</td>
<td>0.32* (0.16)</td>
<td>0.24 (0.15)</td>
<td>0.16 (0.13)</td>
<td>0.16 (0.13)</td>
<td>0.14 (0.13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Name-Only} \times \text{White jobsee.}$</td>
<td>0.29 (0.20)</td>
<td>0.29 (0.20)</td>
<td>0.31* (0.19)</td>
<td>0.19 (0.15)</td>
<td>0.19 (0.15)</td>
<td>0.17 (0.15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
</tr>
<tr>
<td>Other Interactions?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* $p<0.1$, ** $p<0.05$, *** $p<0.01$. Other Interactions include skill, having completed regular high school, employment status, having ever worked, age, and a dummy for having reservation wage over R$1,500.
Heterogeneous Effects Sizes Are Robust to Adding Covariates

Estimate $y_i = \alpha + \beta_{\text{Name-Only}_i} + \sum_{j} \gamma_{j} \text{Name-Only}_i \times X_{i,j} + \nu_{j} X_{i,j}$ for different sets of covariates, including race and/or high expected discrimination

<table>
<thead>
<tr>
<th></th>
<th>(1) Interviewed assessed performance</th>
<th>(2) Interviewed assessed performance</th>
<th>(3) Interviewed assessed performance</th>
<th>(4) Interviewed assessed performance</th>
<th>(5) Self-assessed performance</th>
<th>(6) Self-assessed performance</th>
<th>(7) Self-assessed performance</th>
<th>(8) Self-assessed performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name-Only</td>
<td>-0.11 (0.13)</td>
<td>0.02 (0.09)</td>
<td>-0.18 (0.14)</td>
<td>0.44 (0.46)</td>
<td>0.07 (0.09)</td>
<td>0.12* (0.07)</td>
<td>0.03 (0.10)</td>
<td>0.64* (0.37)</td>
</tr>
<tr>
<td>Name-Only \times High Exp. Disc.</td>
<td>0.33** (0.17)</td>
<td>0.32* (0.16)</td>
<td>0.24 (0.15)</td>
<td>0.16 (0.13)</td>
<td></td>
<td>0.16 (0.13)</td>
<td></td>
<td>0.14 (0.13)</td>
</tr>
<tr>
<td>Name-Only \times White Int.</td>
<td>0.29 (0.20)</td>
<td>0.29 (0.20)</td>
<td>0.31* (0.19)</td>
<td></td>
<td>0.19 (0.15)</td>
<td>0.19 (0.15)</td>
<td>0.17 (0.15)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
</tr>
<tr>
<td>Other Interactions?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*p < 0.1, ** p < 0.05, *** p < 0.01. Other Interactions include skill, having completed regular high school, employment status, having ever worked, age, and a dummy for having reservation wage over R$1,500.
How Relevant Are the Interview Effects?

- Exercise to estimate how many people lost matches due to exp. discrimination
- Take as reference the distribution of interviewer-assessed index in *Name-Only*
- What is the share ejected from the top-X% due to discrimination?

![CDF by Treatment Status](image)

High Exp. Discrimination Sample

- 47% less candidates over top-10% cut-off, $p = 0.09$
- 100% less candidates over top-1% cut-off, $p = 0.16$

Discussion
How Relevant Are the Interview Effects?

- Exercise to estimate how many people lost matches due to exp. discrimination
- Take as reference the distribution of interviewer-assessed index in *Name-Only*
- What is the share ejected from the top-X% due to discrimination?

![CDF by Treatment Status](image)

- But even if effects were restricted to self-perceptions
- Interviewers are not typically blind
- There can be learning and discouragement, mental health issues...

Discussion
How Relevant Are the Interview Effects? Whole Sample

- Exercise to estimate how many people lost matches due to exp. discrimination
- Take as reference the distribution of interviewer-assessed index in *Name-Only*
- What is the share ejected from the top-\(X\)% due to discrimination?

![CDF by Treatment Status](image)

- 11% less candidates over top-10% cut-off, \(p = 0.70\)
- 100% less candidates over top-1% cut-off, \(p = 0.16\)
How Relevant Are the Interview Effects For White Jobseekers?

- Exercise to estimate how many people lost matches due to exp. discrimination
- Take as reference the distribution of interviewer-assessed index in *Name-Only*
- What is the share ejected from the top-X% due to discrimination?

![Diagram showing CDF by Treatment Status for White Jobseekers.](image)

52% less candidates over top-10% cut-off \(p = 0.19 \)

100% less candidates over top-1% cut-off \(p = 0.16 \)
Expected Address Visibility Does Not Change Application Rates – With Double-lasso Selected Controls

![Graph showing the percentage of jobseekers who clicked, applied, and showed up in the full sample and high expected disclosure scenarios. The bars represent status quo, known address, and address omission conditions.](image-url)
Experimental Design: Information Experiment

Phase

Door-to-Door Survey

Application Invite via Text Message

Interview Office

March to June, 2023

Survey

Address omission Experiment (N=1,303)

Interview Experiment (N=422)

N_{total} = 2,167

June to August, 2023

Information Experiment (N=690)

Application

1 to 4 days

1 to 10 days
Information Experiment: Treatments

- Treatment delivered by surveyor after guessing the Audit Study callback rate
- Three treatment arms (N = 690)
 - No Info
 - Favela Info – just the favela (Maré’s) callback (cb) rate
 - Full Info – cb rates for both favela and non-favela

(a) Favela Info
(b) Full Info
Information Leads to Strong Belief Update

- Get posterior by incentivizing the HR firm callback rate prediction
 - Compare own favela vs. closest non-favela rates to gauge discrimination
Information Leads to Strong Belief Update

- Get posterior by incentivizing the HR firm callback rate prediction
 - Compare own favela vs. closest non-favela rates to gauge discrimination

- Treatments shift beliefs
- Both treatments decrease expected discrimination
- Response to expected callback rate can be non-monotonic

Favela under- and overestimators

Model
Information Experiment: Application Rates

- No effect on interview show-up
- No application responses to expected discrimination
 - No effect of exp. disc. if we instrument that belief with treatments
 - No effect on number of applications after two weeks

Summing Up
Information Experiment: IV Estimates

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied (%)</td>
<td>Show Up (%)</td>
<td>Obfuscated in application (%)</td>
</tr>
<tr>
<td>Posterior Expected Callback for Own Favela (%)</td>
<td>-0.45</td>
<td>-0.14</td>
</tr>
<tr>
<td></td>
<td>(0.51)</td>
<td>(0.41)</td>
</tr>
<tr>
<td>Posterior Expected Discrimination Rate (%)</td>
<td>-0.11</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.18)</td>
</tr>
<tr>
<td>Observations</td>
<td>690</td>
<td>690</td>
</tr>
<tr>
<td>No Info Mean</td>
<td>39.8</td>
<td>19.9</td>
</tr>
</tbody>
</table>

* *p < 0.1, **p < 0.05, ***p < 0.01*

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied (%)</td>
<td>Show Up (%)</td>
<td>Obfuscated in application (%)</td>
</tr>
<tr>
<td>Posterior Expected Callback for Own Favela (%)</td>
<td>-0.43</td>
<td>-0.51</td>
</tr>
</tbody>
</table>

* *p < 0.1, **p < 0.05, ***p < 0.01*
How Should Application Rates Respond to Expected Callback Probability?

- Jobseeker picks number of applications \(n \) given
 - an expected callback probability \(p \)
 - constant marginal application cost \(c \)

Solve:

\[
\max_{n \geq 0} V(n, p) - nc
\]

- FOC: \(V_n(n^*, p) - c = 0 \), assuming convex problem (needs \(V_n > 0 \) and \(V_{nn} < 0 \))
- IFT: \(\frac{\partial n^*}{\partial p} = -\frac{V_{np}(n^*, p)}{V_{nn}(n^*, p)} \)
- Potentially non-monotonic response, \(V_{np} \) can be either positive or negative
- Caring only about one’s first callback, \(V(n, p) = (1 - (1 - p)^n)V - nc \) is a simple example
 - For low \(p \), not worth applying
 - For high \(p \), you get a callback with high certainty, so you can decrease \(n \) in response to a marginal increase in \(p \)
Info Treatment Effects - Endline Survey

- Endline conducted two weeks after baseline survey, via WhatsApp
- Multiple choice questions, A to D

<table>
<thead>
<tr>
<th></th>
<th>(1) Responded to endline (0/1)</th>
<th>(2) Exp. discrimination (categorical, 1-4)</th>
<th>(3) # of sent apps (categorical, 1-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favela Info</td>
<td>0.02 (0.05)</td>
<td>0.06 (0.10)</td>
<td>-0.02 (0.13)</td>
</tr>
<tr>
<td>Full Info</td>
<td>0.02 (0.05)</td>
<td>-0.12 (0.10)</td>
<td>0.02 (0.14)</td>
</tr>
<tr>
<td>Observations</td>
<td>690</td>
<td>389</td>
<td>389</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>No Info Mean</td>
<td>0.6</td>
<td>2.3</td>
<td>2.5</td>
</tr>
<tr>
<td>Favela=Full p</td>
<td>0.96</td>
<td>0.06</td>
<td>0.76</td>
</tr>
</tbody>
</table>

- Some persistence of drop in expected discrimination in Full Info
 - p=0.09 comparing Full Info with the two other arms
- Still a null effect on applications
Address Omission Experiment – Expected Discrimination Heterogeneity

Discussion

High Expected Disc.

Low Expected Disc.

% of Jobseekers

<table>
<thead>
<tr>
<th></th>
<th>Clicked</th>
<th>Applied</th>
<th>Show Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Quo</td>
<td>69%</td>
<td>54%</td>
<td>31%</td>
</tr>
<tr>
<td>Known Address</td>
<td>59%</td>
<td>55%</td>
<td>22%</td>
</tr>
<tr>
<td>Address Omission</td>
<td>96%</td>
<td>96%</td>
<td>82%</td>
</tr>
</tbody>
</table>

- N= 284 287 285
- N= 284 287 285
- N= 147 150 149
- N= 147 150 149

p=0.69 p=0.54
p=0.59 p=0.55
p=0.82 p=0.32
p=0.63 p=0.07
p=0.18 p=0.14
p=0.93 p=0.17
p=0.48 p=0.74
p=0.7 p=0.74

Status Quo Known Address Address Omission

Discussion

Address Omission Experiment Discussion
Address Omission Experiment – Race Heterogeneity

White Jobseekers

<table>
<thead>
<tr>
<th></th>
<th>Clicked</th>
<th>Applied</th>
<th>Show Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Quo</td>
<td>N=100</td>
<td>N=100</td>
<td>N=100</td>
</tr>
<tr>
<td>Known Address</td>
<td>N=90</td>
<td>N=90</td>
<td>N=90</td>
</tr>
<tr>
<td>Address Omission</td>
<td>N=107</td>
<td>N=107</td>
<td>N=107</td>
</tr>
</tbody>
</table>

Non-white Jobseekers

<table>
<thead>
<tr>
<th></th>
<th>Clicked</th>
<th>Applied</th>
<th>Show Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Quo</td>
<td>N=331</td>
<td>N=331</td>
<td>N=331</td>
</tr>
<tr>
<td>Known Address</td>
<td>N=347</td>
<td>N=347</td>
<td>N=347</td>
</tr>
<tr>
<td>Address Omission</td>
<td>N=327</td>
<td>N=327</td>
<td>N=327</td>
</tr>
</tbody>
</table>

p-values:
- White Jobseekers: p=0.13, p=0.39, p=0.55, p=0.13, p=0.19, p=0.88, p=0.32, p=0.01
- Non-white Jobseekers: p=0.12, p=0.31, p=0.57, p=0.31, p=0.15, p=0.02, p=0.41, p=0.01
Address Omission Experiment – Gender Heterogeneity

![Bar chart showing percentage of jobseekers clicking, applying, and showing up for male and non-male groups with different address options. The chart includes p-values for each comparison.]
Address Omission Experiment – Skill Heterogeneity

Lower-skill

- **Clicked**
 - Status Quo: 81
 - Known Address: 78
 - Address Omission: 69
 - Comparison: p=0.74

- **Applied**
 - Status Quo: 264
 - Known Address: 252
 - Address Omission: 227
 - Comparison: p=0.81

- **Show Up**
 - Status Quo: 6
 - Known Address: 13
 - Address Omission: 23
 - Comparison: p=0.13

Higher-skill

- **Clicked**
 - Status Quo: 167
 - Known Address: 185
 - Address Omission: 207
 - Comparison: p=0.53

- **Applied**
 - Status Quo: 264
 - Known Address: 252
 - Address Omission: 227
 - Comparison: p=0.42

- **Show Up**
 - Status Quo: 6
 - Known Address: 13
 - Address Omission: 23
 - Comparison: p=0.24

Discussion

- **Lower-skill**
 - Status Quo: 81
 - Known Address: 78
 - Address Omission: 69
 - Comparison: p=0.74

- **Higher-skill**
 - Status Quo: 167
 - Known Address: 185
 - Address Omission: 207
 - Comparison: p=0.53
What Can Reconcile the Interview and Application Results?

- Many differences from job application decision to interview
 - Stakes, stress, time to strategize and rationalize

- Null results on application decision might be because
 - Jobseekers decide to apply based on heuristics
 - Or many might be at “corner solutions”, e.g.,
 - Lack of childcare options
 - Expecting race discrimination either way

- Jobseekers might have difficulty controlling their behaviors in interviews
 - High-expected-discrimination and white jobseekers feel significantly more nervous ($\approx 0.3SD$) when thinking the interviewer knows their address
 - The same individuals obfuscate 20% (5.7pp) less at the office ($p<0.01$)
 - The strongest average effect on an index component was on self-assessed professional behavior (0.2SD)

- Choking under pressure (Harb-Wu and Krumer, 2019; Dohmen, 2008; Baumeister, 1984)
Interview Experiment – Expected Discrimination Heterogeneity

Effect of Name-Only on Interview Performance (SDs)
Interview Experiment – Race Heterogeneity

Effect of Name-Only on Interview Performance (SDs)

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Self Index*White
Self Index*Non-white
Overall*White
Overall*Non-white
Calm*White
Calm*Non-white
Professional*White
Professional*Non-white

Interv. Index*White
Interv. Index*Non-white
Overall*White
Overall*Non-white
Calm*White
Calm*Non-white
Professional*White
Professional*Non-white

95% CI
90% CI
Discussion
Information Experiment – Expected Discrimination Heterogeneity

Beliefs

High Expected Disc. vs. Low Expected Disc.
Information Experiment – Race Heterogeneity

![Bar charts showing the percentage of jobseekers for White and Non-white categories, categorized by action (Clicked, Applied, Show Up) and by status (Status Quo, Known Address, Address Omission).](image)

- **White Jobseekers**
 - Clicked: N=100, N=90, N=107
 - Applied: N=100, N=90, N=107
 - Show Up: N=100, N=90, N=107
 - P-values for differences: p=0.13, p=0.39, p=0.32

- **Non-white Jobseekers**
 - Clicked: N=331, N=347, N=327
 - Applied: N=331, N=347, N=327
 - Show Up: N=331, N=347, N=327
 - P-values for differences: p=0.12, p=0.57, p=0.66

Beliefs
Information Experiment – Gender Heterogeneity

Beliefs

Male

Non-male

% of Jobseekers

Clicked
Applied
Show Up

100
80
60
40
20
0

p=0.72
p=0.64
p=0.65
p=0.93
p=0.05
p=0.05
p=0.72

N= 116
N= 152
N= 116
N= 116
N= 152

N= 315
N= 282
N= 315
N= 315
N= 282

% of Jobseekers

Clicked
Applied
Show Up

100
80
60
40
20
0

p=0.52
p=0.19
p=0.11
p=0.64
p=0.64
p=0.72

N= 321
N= 282
N= 321
N= 321
N= 282

N= 315
N= 282
N= 315
N= 315
N= 282

Status Quo
Known Address
Address Omission
Information Experiment – Skill Heterogeneity

Lower-skill

<table>
<thead>
<tr>
<th></th>
<th>Clicked</th>
<th>Applied</th>
<th>Show Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Quo</td>
<td>N=264</td>
<td>N=252</td>
<td>N=227</td>
</tr>
<tr>
<td>Known Address</td>
<td>N=264</td>
<td>N=252</td>
<td>N=227</td>
</tr>
<tr>
<td>Address Omission</td>
<td>N=264</td>
<td>N=252</td>
<td>N=227</td>
</tr>
</tbody>
</table>

Higher-skill

<table>
<thead>
<tr>
<th></th>
<th>Clicked</th>
<th>Applied</th>
<th>Show Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Quo</td>
<td>N=167</td>
<td>N=185</td>
<td>N=207</td>
</tr>
<tr>
<td>Known Address</td>
<td>N=167</td>
<td>N=185</td>
<td>N=207</td>
</tr>
<tr>
<td>Address Omission</td>
<td>N=167</td>
<td>N=185</td>
<td>N=207</td>
</tr>
</tbody>
</table>

Beliefs
Balance Tests (1/2)

Address Omission Experiment

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Expects >50% disc in audit</td>
<td>White jobseeker (0/1)</td>
<td>Male (0/1)</td>
<td>Skill index</td>
<td>Maré resident (0/1)</td>
<td>Completed regular high school</td>
<td>Working now (0/1)</td>
<td>Ever worked (0/1)</td>
</tr>
<tr>
<td>Address Omission</td>
<td>-0.002</td>
<td>0.015</td>
<td>0.081***</td>
<td>0.092</td>
<td>-0.017</td>
<td>0.027</td>
<td>-0.005</td>
<td>0.053*</td>
<td>0.548</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.032)</td>
<td>(0.029)</td>
<td>(0.031)</td>
<td>(0.059)</td>
<td>(0.028)</td>
<td>(0.029)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>Known Address</td>
<td>-0.002</td>
<td>-0.026</td>
<td>-0.004</td>
<td>-0.025</td>
<td>-0.009</td>
<td>0.024</td>
<td>-0.011</td>
<td>0.039</td>
<td>0.737*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.032)</td>
<td>(0.028)</td>
<td>(0.030)</td>
<td>(0.058)</td>
<td>(0.028)</td>
<td>(0.029)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>Observations</td>
<td>1302</td>
<td>1302</td>
<td>1302</td>
<td>1302</td>
<td>1302</td>
<td>1302</td>
<td>1302</td>
<td>1302</td>
<td>1302</td>
</tr>
<tr>
<td>Status Quo Mean</td>
<td>0.66</td>
<td>0.23</td>
<td>0.27</td>
<td>-0.07</td>
<td>0.80</td>
<td>0.76</td>
<td>0.33</td>
<td>0.69</td>
<td>25.35</td>
</tr>
<tr>
<td>Favela=Full p</td>
<td>1.00</td>
<td>0.15</td>
<td>0.01</td>
<td>0.05</td>
<td>0.76</td>
<td>0.91</td>
<td>0.83</td>
<td>0.63</td>
<td>0.66</td>
</tr>
</tbody>
</table>

* p<0.1, ** p<0.05, *** p<0.01.

Interview Experiment

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Expects >50% disc in audit</td>
<td>White jobseeker (0/1)</td>
<td>Male (0/1)</td>
<td>Skill index</td>
<td>Maré resident (0/1)</td>
<td>Completed regular high school</td>
<td>Working now (0/1)</td>
<td>Ever worked (0/1)</td>
</tr>
<tr>
<td>Name-Only</td>
<td>0.020</td>
<td>-0.001</td>
<td>0.006</td>
<td>0.051</td>
<td>-0.095**</td>
<td>0.019</td>
<td>0.060*</td>
<td>0.056</td>
<td>-0.133</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.048)</td>
<td>(0.042)</td>
<td>(0.043)</td>
<td>(0.085)</td>
<td>(0.047)</td>
<td>(0.041)</td>
<td>(0.033)</td>
<td>(0.565)</td>
</tr>
<tr>
<td>Observations</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
</tr>
<tr>
<td>Control Mean</td>
<td>0.59</td>
<td>0.24</td>
<td>0.26</td>
<td>-0.01</td>
<td>0.66</td>
<td>0.77</td>
<td>0.10</td>
<td>0.71</td>
<td>25.12</td>
</tr>
</tbody>
</table>

* p<0.1, ** p<0.05, *** p<0.01.
Interview Experiment

<table>
<thead>
<tr>
<th></th>
<th>(1) Expects >50% disc in audit</th>
<th>(2) White jobseeker (0/1)</th>
<th>(3) Male (0/1)</th>
<th>(4) Skill index</th>
<th>(5) Maré resident (0/1)</th>
<th>(6) Completed regular high school</th>
<th>(7) Working now (0/1)</th>
<th>(8) Ever worked (0/1)</th>
<th>(9) Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favela Info</td>
<td>0.03</td>
<td>0.00</td>
<td>0.02</td>
<td>-0.02</td>
<td>0.04</td>
<td>-0.00</td>
<td>0.02</td>
<td>0.06</td>
<td>0.92</td>
</tr>
<tr>
<td>(0.05)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.08)</td>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.58)</td>
<td></td>
</tr>
<tr>
<td>Full Info</td>
<td>-0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>-0.17**</td>
<td>0.04</td>
<td>-0.07*</td>
<td>-0.03</td>
<td>-0.01</td>
<td>-0.39</td>
</tr>
<tr>
<td>(0.05)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.08)</td>
<td>(0.05)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.57)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>690</td>
<td>690</td>
<td>690</td>
<td>690</td>
<td>690</td>
<td>690</td>
<td>690</td>
<td>690</td>
<td>690</td>
</tr>
<tr>
<td>No Info Mean</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
<td>0.8</td>
<td>0.3</td>
<td>0.8</td>
<td>26.0</td>
</tr>
<tr>
<td>Favela=Full p</td>
<td>0.23</td>
<td>0.72</td>
<td>0.91</td>
<td>0.07</td>
<td>0.98</td>
<td>0.05</td>
<td>0.29</td>
<td>0.07</td>
<td>0.02</td>
</tr>
</tbody>
</table>

* p<0.1, ** p<0.05, *** p<0.01.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Address Omission Experiment</th>
<th>Information Experiment</th>
<th>Interview Experiment</th>
<th>(1)-(2) Pairwise t-test</th>
<th>(2)-(3) Pairwise t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maré resident (0/1)</td>
<td>N: 1302</td>
<td>Mean: 0.790 (0.011)</td>
<td>N: 690</td>
<td>Mean: 0.354 (0.018)</td>
<td>N: 1992</td>
</tr>
<tr>
<td>Jacarezinho resident (0/1)</td>
<td>N: 1302</td>
<td>Mean: 0.184 (0.011)</td>
<td>N: 690</td>
<td>Mean: 0.193 (0.015)</td>
<td>N: 1992</td>
</tr>
<tr>
<td>Manguinhos resident (0/1)</td>
<td>N: 1302</td>
<td>Mean: 0.027 (0.004)</td>
<td>N: 690</td>
<td>Mean: 0.454 (0.019)</td>
<td>N: 1992</td>
</tr>
<tr>
<td>Age</td>
<td>N: 1302</td>
<td>Mean: 25.783 (0.174)</td>
<td>N: 690</td>
<td>Mean: 26.036 (0.236)</td>
<td>N: 1992</td>
</tr>
<tr>
<td>Male (0/1)</td>
<td>N: 1302</td>
<td>Mean: 0.295 (0.013)</td>
<td>N: 690</td>
<td>Mean: 0.303 (0.018)</td>
<td>N: 1992</td>
</tr>
<tr>
<td>White jobseeker (0/1)</td>
<td>N: 1302</td>
<td>Mean: 0.228 (0.012)</td>
<td>N: 690</td>
<td>Mean: 0.210 (0.016)</td>
<td>N: 1992</td>
</tr>
<tr>
<td>Some college (0/1)</td>
<td>N: 1302</td>
<td>Mean: 0.064 (0.007)</td>
<td>N: 690</td>
<td>Mean: 0.080 (0.010)</td>
<td>N: 1992</td>
</tr>
<tr>
<td>Completed regular high-school (0/1)</td>
<td>N: 1302</td>
<td>Mean: 0.776 (0.012)</td>
<td>N: 690</td>
<td>Mean: 0.823 (0.015)</td>
<td>N: 1992</td>
</tr>
<tr>
<td>Working now (0/1)</td>
<td>N: 1302</td>
<td>Mean: 0.326 (0.013)</td>
<td>N: 690</td>
<td>Mean: 0.284 (0.017)</td>
<td>N: 1992</td>
</tr>
<tr>
<td>Holds a formal job (0/1)</td>
<td>N: 1302</td>
<td>Mean: 0.118 (0.009)</td>
<td>N: 690</td>
<td>Mean: 0.135 (0.013)</td>
<td>N: 1992</td>
</tr>
<tr>
<td>Ever worked (0/1)</td>
<td>N: 1302</td>
<td>Mean: 0.722 (0.012)</td>
<td>N: 690</td>
<td>Mean: 0.786 (0.016)</td>
<td>N: 1992</td>
</tr>
<tr>
<td>Actively search last week (0/1)</td>
<td>N: 1302</td>
<td>Mean: 0.531 (0.014)</td>
<td>N: 690</td>
<td>Mean: 0.425 (0.019)</td>
<td>N: 1992</td>
</tr>
<tr>
<td>Surveyor-assessed comm skills (Likert scale, 0-5)</td>
<td>N: 1302</td>
<td>Mean: 2.795 (0.029)</td>
<td>N: 690</td>
<td>Mean: 2.797 (0.045)</td>
<td>N: 1992</td>
</tr>
<tr>
<td>Math test score</td>
<td>N: 1302</td>
<td>Mean: 6.960 (0.072)</td>
<td>N: 690</td>
<td>Mean: 6.945 (0.091)</td>
<td>N: 1992</td>
</tr>
</tbody>
</table>
Interviewer-assessed Rating Distribution – Overall

Top-10% cut-off: 10.89% ejected, p = 0.70
Top-1% cut-off: 100.00% ejected, p = 0.16

Interviewer-assessed Performance Index (SDs)

Density

Name-and-Address
Name-Only

Top-10% cut-off
10.89% ejected
p = 0.70

Top-1% cut-off
100.00% ejected

Interviewer-assessed Performance Index (SDs)
Interviewer-assessed Rating Distribution – High Exp. Disc

Interviewer-assessed Performance Index (SDs)
Interviewer-assessed Rating Distribution – White Jobseekers

Interviewer-assessed Performance Index (SDs)

Density

Name-and-Address
Name-Only

Top-10% cut-off
Literature

▶ Effects of expected discrimination
 ▶ Related: Del Carpio and Fujiwara (2023); Avery et al. (2023); Burn et al. (2023)
 ▶ Lab: Kang et al. (2016); Charness et al. (2020); Hoff and Pandey (2006); Fryer et al. (2005); Aksoy et al. (2023)
 ▶ Other: Kuhn and Shen (2023); Agüero et al. (2023); Pager and Pedulla (2015); Lepage et al. (2022); Dickerson et al. (2022); Lang and Manove (2011)

▶ Interviews Goldin and Rouse (2000); Word et al. (1974)
 ▶ Stereotype threat & self-fulfilling prophecies: Steele and Aronson (1995); Vecci and Želinský (2019); Coate and Loury (1993); Lundberg and Startz (1983); Glover et al. (2017)
 ▶ Welfare stigma: Schanzenbach (2009); Finkelstein and Notowidigdo (2019); Lasky-Fink and Linos (2022)

▶ Slums and address-based discrimination Westphal (2014); Zanoni et al. (2023); Bonnet et al. (2016); Mikula and Reggiani (2022)

▶ Literature on audit studies Riach and Rich (2002); Rich (2014); Neumark (2018)

Lasky-Fink, Jessica and Elizabeth Linos, “It’s not your fault: Reducing stigma increases take-up of government programs,” Available at SSRN 4040234, 2022.

