One size does not fit all: neural correlates of high performance are different for children in poverty

Monica E. Ellwood-Lowe

Psychology and Economics of Poverty Convening | April 1, 2022

Susan Whitfield-Gabrieli

Carolyn Irving

Silvia Bunge

With support from:

- the massive efforts of the large team of ABCD leaders and organizers, staff and data curators, and families and children who participated
- ABCD Workshop on Brain Development and Mental Health (Award Number R25MH120869)
- National Science Foundation Graduate Research Fellowship
- Jacobs Foundation Advanced Career Research Fellowship
- PEP seed funding grant
- ICBS seed funding grant
- Building Blocks of Cognition Lab
- Language and Cognitive Development Lab

Poverty Disturbs Children's Brain Development and Academic Performance

Delayed brain development predicts lower tests scores in low-income children

NEUROSCIENCE

Poverty Disturbs Children's Brain Development and Academic Performance

Delayed brain development predicts lower tests scores in low-income children

News > Science

Poverty changes your brain to make you less intelligent, study suggests

NEUROSCIENCE

Poverty Disturbs Children's Brain Development and Academic Performance

Delayed brain development predicts lower tests scores in low-income children

News > Science

Poverty changes your brain to make you less intelligent, study suggests

HEALTHCARE & PHARMA AUGUST 29, 2013 / 11:06 AM / UPDATED 9 YEARS AGO

Study finds poverty reduces brain power

What is "normal" brain development?

What is "normal" brain development?

• n = 11,000 + kids

21 sites across the United States

Beginning at age 9-10 years

Will be followed through age 18

Children from higher-income homes tend to score higher on cognitive tests

Susan Whitfield-Gabrieli

Silvia Bunge

Ellwood-Lowe, Whitfield-Gabrieli, & Bunge, 2021, Nature Communications

Ellwood-Lowe, Whitfield-Gabrieli, & Bunge, 2021, Nature Communications

There is variability in test performance at every income level

ABCD study

Ellwood-Lowe, Whitfield-Gabrieli, & Bunge, 2021, Nature Communications

How do children in poverty achieve high performance on cognitive tests?

ABCD study

Ellwood-Lowe, Whitfield-Gabrieli, & Bunge, 2021, Nature Communications

How do children in poverty achieve high performance on cognitive tests?

ABCD study

Ellwood-Lowe, Whitfield-Gabrieli, & Bunge, 2021, Nature Communications

Environment A Environment B

School

Environment A Environment B

School

Resilience = the ability to adapt to the new environment

School

Resting state fMRI: functional connectivity

Intrinsic, spontaneous fluctuations in fMRI BOLD signal

- Regions with strong temporal coupling: high "functional connectivity"
 - Regions with a strong history of co-activation (cumulative experience)
 - Form networks of brain regions that are consistent across individuals
 - Reflect prior & ongoing thought patterns (habits of mind)?

Resting state fMRI: functional connectivity

Intrinsic, spontaneous fluctuations in fMRI BOLD signal

- Regions with strong temporal coupling: high "functional connectivity"
 - Regions with a strong history of co-activation (cumulative experience)
 - Form networks of brain regions that are consistent across individuals
 - Reflect prior & ongoing thought patterns (habits of mind)?

Less resting state coupling between LFPN and DMN thought to be adaptive

Less resting state coupling between LFPN and DMN thought to be adaptive

LFPN: essential for higherlevel cognitive tasks like reasoning

DMN: essential for internally-directed cognition

Less resting state coupling between LFPN and DMN thought to be adaptive

LFPN: essential for higherlevel cognitive tasks like reasoning

DMN: essential for internally-directed cognition

more LFPN-DMN segregation linked to better outcomes

PREDICTED Relation between LFPN-DMN connectivity and test scores

PREDICTED Relation between LFPN-DMN connectivity and test scores

LFPN: essential for higher-level cognitive tasks like reasoning **| DMN**: essential for internally-directed cognition

Estimated

LFPN-DMN correlates of test performance

LFPN-DMN correlates of test performance

LFPN-DMN correlates of test performance

Cile in Dunas

Carolyn Irving Silvia Bunge

Ecologically- valid measures:

- Grades in school
- Attention problems

Ecologically- valid measures:

- Grades in school
- Attention problems

Longitudinal sampling:

- Ages 9-10
- Ages 10-11
- Ages 11-12

Ecologically- valid measures:

- Grades in school
- Attention problems

Longitudinal sampling:

- Ages 9-10
- Ages 10-11
- Ages 11-12

Ecologically- valid measures:

- Grades in school
- Attention problems

Longitudinal sampling:

- Ages 9-10
- Ages 10-11
- Ages 11-12

Longitudinally predictive for grades

Ecologically- valid measures:

- Grades in school
- Attention problems

evidence that in our sample, this is a robust and meaningful dissociation

Longitudinal sampling:

- Ages 9-10
- Ages 10-11
- Ages 11-12

Longitudinally predictive for grades

Combined family income (bins)

e.g., Frankenhuis et al., 2020

Combined family income (bins)

e.g., Frankenhuis et al., 2020

LFPN and DMN coactivate during:

- Drawing on past experiences and planning for the future
- Directed mind-wandering and meditation
- Creative thinking

School

e.g., Beaty et al., 2016; Christoff et al., 2009; Dixon et al., 2014; Kucyi et al., 2021; Spreng & Turner, 2019

NEUROSCIENCE

Poverty Disturbs Children's Brain Development and Academic Performance

Delayed brain development predicts lower tests scores in low-income children

News > Science

Poverty changes your brain to make you less intelligent, study suggests

HEALTHCARE & PHARMA AUGUST 29, 2013 / 11:06 AM / UPDATED 9 YEARS AGO

Study finds poverty reduces brain power

NEUROSCIENCE

Poverty Disturbs Children's Brain Development and Performan

Delayed brain development predicts lower tests sc

News > Science

Poverty changes you less intellige

The brain adapts meaningfully to different constraints

in to make suggests

HEALTHCARE &

1 / UPDATED 9 YEARS ASO

Study finds poverty reduces brain power

THANK YOU!

Made possible by:

- the massive efforts of the large team of ABCD leaders and organizers, staff and data curators, and families and children who participated
- ABCD Workshop on Brain Development and Mental Health (Award Number R25MH120869)
- National Science Foundation Graduate Research Fellowship
- Jacobs Foundation Advanced Career Research Fellowship
- PEP seed funding grant
- ICBS seed funding grant
- Building Blocks of Cognition Lab
- Language and Cognitive Development Lab

Susan Whitfield-Gabrieli

Carolyn Irving

Silvia Bunge

Building Blocks of Cognition Lab