One size does not fit all: neural correlates of high performance are different for children in poverty

Monica E. Ellwood-Lowe
With support from:

- the massive efforts of the large team of ABCD leaders and organizers, staff and data curators, and families and children who participated
- ABCD Workshop on Brain Development and Mental Health (Award Number R25MH120869)
- National Science Foundation Graduate Research Fellowship
- Jacobs Foundation Advanced Career Research Fellowship
- PEP seed funding grant
- ICBS seed funding grant
- Building Blocks of Cognition Lab
- Language and Cognitive Development Lab
Poverty Disturbs Children's Brain Development and Academic Performance

Delayed brain development predicts lower test scores in low-income children
Poverty Disturbs Children's Brain Development and Academic Performance

Delayed brain development predicts lower tests scores in low-income children

News > Science

Poverty changes your brain to make you less intelligent, study suggests
Poverty Disturbs Children's Brain Development and Academic Performance

Delayed brain development predicts lower tests scores in low-income children

Poverty changes your brain to make you less intelligent, study suggests

Study finds poverty reduces brain power
What is “normal” brain development?

Gogtay et al., 2004, PNAS
What is “normal” brain development?

Gogtay et al., 2004, PNAS

$n = 13$ kids

avg IQ = 126 (95th percentile)

cited by 6,000+
• $n = 11,000+$ kids
• 21 sites across the United States
• Beginning at age 9-10 years
• Will be followed through age 18

https://abcdstudy.org
Children from higher-income homes tend to score higher on cognitive tests.

Children from higher-income homes tend to score higher on cognitive tests.

- ABCD study
- $n = 6,839$
- ages 9-10 years
- 21 sites across the United States

There is variability in test performance at every income level.

How do children in poverty achieve high performance on cognitive tests?

- ABCD study
- $n = 6,839$
- ages 9-10 years
- 21 sites across the United States

$R = 0.24, p < 0.001$

How do children in poverty achieve high performance on cognitive tests?

- ABCD study
- $n = 6,839$
- ages 9-10 years
- 21 sites across the United States

One starting point: the mismatch hypothesis

Deschenes, Cuban, & Tyack, 2001; Trueba, 1988
One starting point: the mismatch hypothesis

Deschenes, Cuban, & Tyack, 2001; Trueba, 1988
One starting point: the mismatch hypothesis

Deschenes, Cuban, & Tyack, 2001; Trueba, 1988
One starting point: the mismatch hypothesis

Resilience = the ability to adapt to the new environment
Resting state fMRI: functional connectivity

- Regions with strong temporal coupling: high "functional connectivity"
 - Regions with a strong history of co-activation (cumulative experience)
 - Form networks of brain regions that are consistent across individuals
- Reflect prior & ongoing thought patterns (habits of mind)?

Intrinsic, spontaneous fluctuations in fMRI BOLD signal
Resting state fMRI: functional connectivity

- Regions with strong temporal coupling: high "functional connectivity"
 - Regions with a strong history of co-activation (cumulative experience)
 - Form networks of brain regions that are consistent across individuals
- Reflect prior & ongoing thought patterns (habits of mind)?

Intrinsic, spontaneous fluctuations in fMRI BOLD signal
Less resting state coupling between LFPN and DMN thought to be adaptive
Less resting state coupling between LFPN and DMN thought to be adaptive

LFPN: essential for higher-level cognitive tasks like reasoning

DMN: essential for internally-directed cognition

Vincent et al., 2008; Raichle et al., 2001; Spreng, 2012
Less resting state coupling between LFPN and DMN thought to be adaptive

LFPN: essential for higher-level cognitive tasks like reasoning

DMN: essential for internally-directed cognition

more **LFPN-DMN** segregation linked to better outcomes

Chai et al., 2014; Satterthwaite et al., 2013; Sherman et al., 2014; Whitfield-Gabrieli et al., 2020
LFPN-DMN correlates of test performance

LFPN: essential for higher-level cognitive tasks like reasoning
DMN: essential for internally-directed cognition

LFPN-DMN correlates of test performance

LFPN: essential for higher-level cognitive tasks like reasoning
DMN: essential for internally-directed cognition

LFPN-DMN correlates of test performance

LFPN: essential for higher-level cognitive tasks like reasoning

DMN: essential for internally-directed cognition

PREDICTED

Relation between LFPN-DMN connectivity and test scores

ACTUAL

Relation between LFPN-DMN connectivity and test scores

Estimated poverty status
- Below poverty
- Above poverty

Summed cognitive test scores

Below poverty:

$B = 2.11$, $SE = 1.12$; $p = 0.060$

$B = -1.41$, $SE = 0.45$; $p = 0.002$

Interaction: $X^2(1) = 8.99$, $p = 0.003$

LFPN-DMN correlates of test performance

LFPN: essential for higher-level cognitive tasks like reasoning

DMN: essential for internally-directed cognition

Predicted

Relation between LFPN-DMN connectivity and test scores

Actual

Relation between LFPN-DMN connectivity and test scores

Estimated poverty status

- Below poverty
- Above poverty

Summed cognitive test scores

Below poverty: \(B = 2.11, \text{SE} = 1.12; p = 0.060 \)

Above poverty: \(B = -1.41, \text{SE} = 0.45; p = 0.002 \)

Interaction: \(\chi^2 (1) = 8.99, p = 0.003 \)

LFPN-DMN correlates of test performance

Estimated poverty status
- Below poverty
- Above poverty

Predicted
- Relation between LFPN-DMN connectivity and test scores

Actual
- Relation between LFPN-DMN connectivity and test scores

LFPN: essential for higher-level cognitive tasks like reasoning

DMN: essential for internally-directed cognition

Summed cognitive test scores

PREDICTED

ACTUAL

Below poverty: $B = 2.11$, SE = 1.12; $p = 0.060$

Above poverty: $B = -1.41$, SE = 0.45; $p = 0.002$

Interaction: $X^2 (1) = 8.99$, $p = 0.003$

LFPN-DMN correlates of test performance

Below poverty: $B = 2.11$, SE $= 1.12$; $p = 0.060$

Above poverty: $B = -1.41$, SE $= 0.45$; $p = 0.002$

Interaction: $\chi^2 (1) = 8.99$, $p = 0.003$

LFPN-DMN correlates of test performance

LFPN-DMN correlates of test performance

LFPN-DMN correlates of test performance

Relation between LFPN-DMN connectivity and test scores:
Children estimated to be living in poverty

Estimated poverty status
- Below poverty
- Above poverty

Below poverty: $B = 2.11$, SE = 1.12; $p = 0.060$
Above poverty: $B = -1.41$, SE = 0.45; $p = 0.002$
Interaction: $X^2 (1) = 8.99$, $p = 0.003$

LFPN-DMN correlates of test performance

Potential evidence that patterns of “optimal” brain development depend on children’s environments.

Relation between LFPN-DMN connectivity and test scores:
- Children estimated to be living in poverty:
 - Below poverty: $B = 2.11$, SE = 1.12; $p = 0.060$
 - Above poverty: $B = -1.41$, SE = 0.45; $p = 0.002$
 - Interaction: $X^2 (1) = 8.99, p = 0.003$

LFPN-DMN correlates of test performance

potential evidence that patterns of “optimal” brain development depend on children’s environments

Relation between LFPN-DMN connectivity and test scores:
- Children estimated to be living in poverty

- Below poverty: $B = 2.11$, SE $= 1.12$; $p = 0.060$
- Above poverty: $B = -1.41$, SE $= 0.45$; $p = 0.002$
- Interaction: $X^2 (1) = 8.99$, $p = 0.003$

Exploring LFPN-DMN correlates of performance in the “real world” over time
Exploring LFPN-DMN correlates of performance in the “real world” over time

Ecologically-valid measures:
- Grades in school
- Attention problems

Ellwood-Lowe, Irving, & Bunge, 2022, *Developmental Cognitive Neuroscience*
Exploring LFPN-DMN correlates of performance in the “real world” over time

Ecologically-valid measures:
- Grades in school
- Attention problems

Longitudinal sampling:
- Ages 9-10
- Ages 10-11
- Ages 11-12

Ellwood-Lowe, Irving, & Bunge, 2022, Developmental Cognitive Neuroscience
Exploring LFPN-DMN correlates of performance in the “real world” over time

Ecologically-valid measures:
- Grades in school
- Attention problems

Longitudinal sampling:
- Ages 9-10
- Ages 10-11
- Ages 11-12

Ellwood-Lowe, Irving, & Bunge, 2022, *Developmental Cognitive Neuroscience*
Exploring LFPN-DMN correlates of performance in the “real world” over time

Ecologically-valid measures:
- Grades in school ✓
- Attention problems ✓

Longitudinal sampling:
- Ages 9-10
- Ages 10-11
- Ages 11-12

Longitudinally predictive for grades

Ellwood-Lowe, Irving, & Bunge, 2022, Developmental Cognitive Neuroscience
Exploring LFPN-DMN correlates of performance in the “real world” over time

Ecologically-valid measures:
- Grades in school
- Attention problems

Longitudinal sampling:
- Ages 9-10
- Ages 10-11
- Ages 11-12

Evidences that in our sample, this is a robust and meaningful dissociation

Ellwood-Lowe, Irving, & Bunge, 2022, Developmental Cognitive Neuroscience
Children in poverty might rely on different mechanisms to perform well.
Children in poverty might rely on different mechanisms to perform well.
Children in poverty might rely on different mechanisms to perform well

e.g., Frankenhuis et al., 2020
Children in poverty might rely on different mechanisms to perform well

Children's Cognitive Test Scores by Family Income

- **Cognitive test score sum**
- **Combined family income (bins):**
 - Less than $5,000
 - $5,000 - $11,999
 - $12,000 - $17,999
 - $18,000 - $23,999
 - $24,000 - $29,999
 - $30,000 - $35,999
 - $36,000 - $41,999
 - $42,000 - $47,999
 - $48,000 - $53,999
 - $54,000 - $59,999
 - $60,000 - $65,999
 - $66,000 - $71,999
 - $72,000 - $77,999
 - $78,000 - $83,999
 - $84,000 - $89,999
 - $90,000 - $95,999
 - $96,000 - $101,999
 - $102,000 - $107,999
 - $108,000 - $113,999
 - $114,000 - $119,999
 - $120,000 and greater

Estimated Poverty Status:
- Below poverty
- Above poverty

e.g., Frankenhuis et al., 2020
Children in poverty might rely on different mechanisms to perform well

LFPN and DMN coactivate during:

- Drawing on past experiences and planning for the future
- Directed mind-wandering and meditation
- Creative thinking

e.g., Beaty et al., 2016; Christoff et al., 2009; Dixon et al., 2014; Kucyi et al., 2021; Spreng & Turner, 2019
Poverty Disturbs Children's Brain Development and Academic Performance

Delayed brain development predicts lower tests scores in low-income children

Poverty changes your brain to make you less intelligent, study suggests

Study finds poverty reduces brain power
The brain adapts meaningfully to different constraints.
Made possible by:

- the massive efforts of the large team of ABCD leaders and organizers, staff and data curators, and families and children who participated
- ABCD Workshop on Brain Development and Mental Health (Award Number R25MH120869)
- National Science Foundation Graduate Research Fellowship
- Jacobs Foundation Advanced Career Research Fellowship
- PEP seed funding grant
- ICBS seed funding grant
- Building Blocks of Cognition Lab
- Language and Cognitive Development Lab