The Economic Impact of Depression Treatment in India

Manuela Angelucci University of Texas at Austin Daniel Bennett University of Southern California

April 1, 2022

This Study

Motivation

- Depression is correlated with poverty and may contribute to poverty traps.
- Policy challenge: both supply and demand are constrained.
- ▶ What is the role for pharmacotherapy?

Impact Evaluation

- Community-based cluster-randomized trial near Bangalore, India.
- ► Community screening to recruit 1000 adults with mild/moderate symptoms.
- Cross-randomize pharmacotherapy (PC) and livelihoods assistance (LA).
- Assess impacts on depression, socioeconomic outcomes, potential pathways.
- Follow pre-specified analysis plan.

Interventions

Psychiatric Care (PC)

- Collaborate with a local social service organization (GASS).
- Eight months of free psychiatric care through Shridevi Research Hospital.
- Most patients received SSRIs.

Livelihoods Assistance (LA)

- ► Two group meetings: how to earn income, deal with on-the-job challenges.
- ▶ Personalized assistance to identify and pursue income-generating activities.
- ▶ Job placements, small loans, training, according to the participant's needs.

Key Outcomes

- Depression severity: Standardized PHQ-9 score, PHQ-9 < 5 and PHQ-9
 10 indicators.
- ► Work time: Time spent on employment, domestic work, and child care in 24-hour time diaries.
- Earnings: Weekly earnings from primary and secondary jobs.
- ► Child human capital investment: enrollment, attendance days, homework hours, paid work hours. Measured in Rounds 1-4 for children aged 5-18.
- ▶ Risk intolerance: DOSPERT Scale (Blais & Weber 2006); generalized risk self-assessment; incentivized lottery game (Eckel & Grossman 2008).

Impact on Depression Symptoms

Impact on Work Time and Earnings

Table 3: Impact on Weekly Work Time and Earnings

	Ho	ırs	Earnings		
	(1)	(2)	(3)	(4)	
A: During the PC Intervention					
PC/LA	1.07	1.48	37.9	22.4	
	(1.66)	(1.60)	(61.3)	(57.7)	
PC	-5.40***	-4.92***	-65.4	-82.9	
	(1.70)	(1.64)	(54.2)	(53.1)	
LA	-1.02	-0.50	-32.8	-38.0	
	(1.68)	(1.61)	(61.8)	(58.1)	
Control mean of outcome	58.7	58.7	577.1	577.1	
B: After the PC Intervention					
PC/LA	-3.31*	-2.84	38.7	20.8	
	(1.77)	(1.74)	(67.3)	(65.9)	
PC	-1.18	-0.84	-52.8	-63.6	
	(1.98)	(1.89)	(61.0)	(57.5)	
LA	-1.52	-1.04	47.9	45.1	
	(1.95)	(1.93)	(62.2)	(60.0)	
Control mean of outcome	60.4	60.4	639.2	639.2	
Specification	ANCOVA	LASSO	ANCOVA	LASSO	
Observations	3476	3476	3476	3476	

Impact on Child Human Capital Investment

Table 4: Impact on Child Human Capital Investment

	Child Human Capital Investment Index							
	Full Sample		Child Age < 12		Child Age ≥ 12			
	(1)	(2)	(3)	(4)	(5)	(6)		
B: After the PC Intervention								
PC/LA	0.12	0.12	-0.087	-0.076	0.42*	0.32		
	(0.13)	(0.13)	(0.13)	(0.13)	(0.25)	(0.28)		
PC	0.19*	0.22**	-0.013	-0.0018	0.46***	0.46***		
	(0.10)	(0.11)	(0.11)	(0.11)	(0.17)	(0.17)		
LA	0.11	0.11	-0.026	-0.017	0.34*	0.31		
	(0.12)	(0.12)	(0.12)	(0.12)	(0.20)	(0.21)		
H_0 : $PC/LA = PC$	0.60	0.45	0.97	0.99	0.85	0.68		
H_0 : $PC/LA = PC = LA$	0.75	0.53	0.94	0.96	0.81	0.56		
Control mean of outcome	0.03	0.03	0.25	0.25	-0.25	-0.25		
Specification	ANCOVA	LASSO	ANCOVA	LASSO	ANCOVA	LASSO		
Observations	2229	2229	1242	1242	987	987		

Impacts on Socioeconomic Outcomes

April 1, 2022

Impacts on Potential Pathways

PC

PC/LA

Discussion

Interpretation of Pathways

- No evidence of a productivity pathway in this sample.
- A preference pathway may explain the joint effects on human capital investment and risk intolerance.

Policy

- ▶ It is feasible to provide pharmacotherapy with local resources.
- ► LA strengthens the impact of PC on depression and protects against some transitory effects of PC.
- ▶ Adding LA (\$9 per participant) is cost effective.

Depression and the Demand for a Novel Health Product: Evidence from India

Manuela Angelucci University of Texas at Austin Daniel Bennett University of Southern California

April 1, 2022

Introduction

Two Puzzles

- Many poor people have low demand and high elasticity of demand for health products (bed nets, water purifiers, clean cook stoves).
- ▶ There is a low correlation between product use and willingness to pay.
- Implication: it is difficult for interventions to achieve sustainability.
- Many possible explanations: liquidity constraints, information, behavioral biases.

The Demand for Health Products

Dupas and Miguel (2017): Handbook of the Economics of Field Experiments

The Role of Depression?

Depression May Limit the Demand for Novel Health Products

- Depression may shift in the budget constraint by reducing productivity.
- Depression may interfere with learning about a novel product.
- Depression may create barriers to action.
 - Anhedonia may reduce the utility from adopting a new technology.
 - Pessimism may reduce the perceived utility of adoption.
 - Indecisiveness may make it more difficult to decide whether to adopt.

Research Questions

- 1. Does depression affect the demand for a novel health product?
- 2. If so, which pathways may be important?

The Product

- Hand sanitizer is a novel health health product.
- Particularly useful for people with limited access to soap and running water.
- Available in local pharmacies but not commonly used.
- ▶ 80 rupees (\$1.17), <1% of monthly household budget

Trial Design

- Step 1: Community-based Depression Treatment (DT)
- **Step 2: Free Provision of Hand Sanitizer (FP)** (six months after Step 1)
 - ▶ 80% of participants received 600ml of sanitizer for free.
 - Cross-randomized individually with DT.
- **Step 3: Measure Sanitizer Use** (six months after Step 2)
- **Step 4: Elicit Willingness to Pay for Sanitizer** (six months after Step 3)

Measurement

Willingness to Pay

- ▶ BDM incentive-compatible WTP elicitation: the participant states and "offer price" and the surveyor randomly selects a "draw price". If the offer price exceeds the draw price, the participant buys the good for the draw price.
- ▶ BDM occurs after most FP participants have depleted the free sanitizer.

Product Use

- Participants self-report whether they use sanitizer at least daily.
- ▶ Validation: observe the quantity remaining for FP participants.
- ▶ We observe use while most FP participants still have some sanitizer left.

DT Increases Sanitizer Demand

Impact of Free Provision on Demand

DT has different effects on WTP and use

Table 3: Empirical Tests of Potential Pathways

$Y_{ij}^p = \eta^p + \delta^p DT_j + \theta^p FP_{ij} + \lambda^p (DT_j \times FP_{ij}) + X_j' \psi^p + \varepsilon_{ij}^p$								
	Individual Earnings (1)	Daily Use (2)	Familiar with Product (3)	WTP (4)				
δ^p	-41.7	0.092	0.021	5.07*				
	(92.5)	(0.091)	(0.061)	(2.65)				
θ^p	54.3	0.40***	0.81***	1.74				
	(68.4)	(0.069)	(0.041)	(2.04)				
λ^p	-24.0	-0.16	-0.013	-2.50				
	(104.9)	(0.10)	(0.066)	(3.00)				
$\delta^p + \lambda^p$ P-Value:	-65.7	-0.07	0.008	2.57*				
	[0.18]	[0.14]	[0.75]	[0.07]				
Months since free provision	12	6	12	12				
Control mean	316	0.15	0.09	60.6				
Observations	794	794	794	794				

Pathways

Summary

- X income (no effects of DT on earnings/income/consumption)
- X experiential learning (free provision does not moderate the effect of DT)
- ? preferences (Cannot reject that demand and use have the same sign)
- cost of action (DT increases demand but not use; no impact on WTP for a non-novel product.)

Most alternative pathways lead to parallel effects on product demand and use.

Placebo Test for a Non-Novel Product

- Biscuits (cookies) are common and familiar.
- ➤ 30 rupees (\$0.46) for a package.

A Small and Insignificant Impact of DT on Demand for Biscuits (p = 0.12)

Policy

Policy Implications for Settings with Endemic Depression

- ► Free distribution may dominate cost sharing.
- By affecting demand but not use, depression undermines the effect of "screening" benefit of charging positive prices.
- Minimize psychic costs by bringing the product to users (avoid "ordeal mechanisms").
- Point-of-use distribution may achieve greater adoption than cost-sharing for a given budget.

Free Provision Does Not Increase Demand

Heterogeneity in the Impact of DT

Heterogeneity in the Impact of FP

Differential Impact on WTP

