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Why monitor agriculture?

ÅEstimate crop production 
(domestic and international)

2

-0.20

-0.10

0.00

0.10

0.20

0.30

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

WASDE forecast errors over past 20 years 

Highest uncertainty before harvest: 

opportunity window for EO

Credit: J. Glauber



Why monitor agriculture?

ÅEstimate crop production 
(domestic and international)

ÅInform and stabilize markets
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Why monitor agriculture?

ÅEstimate crop production 
(domestic and international)

ÅInform and stabilize markets

ÅAnticipate crises & deliver aid
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ñIn the past we always reacted to crop failure, 

spending billions of shillings to provide food 

aid in the region. 

2017 was the first time we acted proactively 

because we had clear evidence from 

satellite data very early in the season.ò

Martin Owor, Commissioner

Office of the Prime Minister 

(OPM) ïUganda

> $2.6 million saved, 
> 150k people helped



Why monitor agriculture?

ÅEstimate crop production 
(domestic and international)

ÅInform and stabilize markets

ÅAnticipate crises & deliver aid

ÅInform insurance programs
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Flooded croplands in Iowa, spring 2019

J. Schaaf



Why monitor agriculture?

ÅEstimate crop production 
(domestic and international)

ÅInform and stabilize markets

ÅAnticipate crises & deliver aid

ÅInform insurance programs

ÅMonitor and meet sustainable 
development goals
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SDG directly related to agriculture



NASAôs commitment to agricultural monitoring

ÅSatellite data used for 
agricultural monitoring 
since 1970s
ÅNASA AgRISTARS program

ÅDespite 40+ years, huge 
potential of remote sensing 
yet to be fully realized

ÅToday we are enabled by 
ML and modern compute 
to realize this potential
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Credit: NASA/Sean Smith

NASA agro-nauts?



ML: unlocking potential of satellite data 

San Francisco, February 11, 2017. Planet, Inc.
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ÅHuge data volumes
Å11 TB/day from Planet Labs alone

ÅHigh-dimensional data
ÅMultispectral, hyperspectral
ÅFrequent revisit times
ÅLandsat: 16 days

ÅSentinel-2: 5 days

ÅPlanet Labs: daily or sub-daily

ÅNon-trivial interaction and pre-proc
ÅCloud removal
ÅOrbital track
ÅInterpolation/smoothing 
ÅCo-registration



ML: unlocking potential of satellite data 

Credit: Christophe et al., 2008
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HyperspectralImageCompression:AdaptingSPIHT

andEZW to Anisotropic3-D WaveletCoding
EmmanuelChristophe, Member, IEEE, CorinneMailhes, Member, IEEE, and PierreDuhamel, Fellow, IEEE

AbstractðHyperspectral imagespresentsomespeciýccharac-

teristics that should be used by an efýcientcompressionsystem.
In compression,wavelets have shown a good adaptability to a

wide range of data, while being of reasonablecomplexity. Some

wavelet-based compression algorithms have been successfully
used for somehyperspectral spacemissions.This paper focuses

on the optimization of a full wavelet compression system for

hyperspectral images.Each step of the compressionalgorithm is

studied and optimized. First, an algorithm toýndthe optimal 3-D

wavelet decompositionin a rate-distortion senseisdeýned.Then,

it is shown that aspeciýcýxeddecompositionhasalmost the same
performance, while being more useful in terms of complexity

issues.It is shown that this decompositionsigniýcantlyimpr oves

the classicalisotropic decomposition.Oneof the most useful prop-

erties of this ýxeddecompositionis that it allows the useof zero

tr ee algorithms. Various tr ee structur es, creating a relationship
betweencoefýcients,are compared. Two efýcientcompression

methodsbasedon zerotreecoding (EZW and SPIHT) areadapted

on this near-optimal decomposition with the best tr ee structur e

found. Performancesare compared with the adaptation of JPEG

2000 for hyperspectral images on six differ ent areas presenting
differ ent statistical properties.

Index TermsðCompression,EZW, hyperspectral, JPEG 2000,

SPIHT, zerotrees.

I. INTRODUCTION

I
MAGE sensors,whetherusedto observe the Earth from

spaceor to explore deepspaceanddistantbodies,always

seekbetterdataquality to improvethescientiýcor thestrategic

valueof the informationprovided. Improving theperformance

of suchsensorsoften requiresan increasein the spatial res-

olution, the radiometricprecisionandpossibly the numberof

spectralbands.High-spectralresolutioninstruments,fall within

thisglobalevolution.Suchsensors,namedeitherimagingspec-

trometersor hyperspectralsensors,arebecomingincreasingly

commonnowadays.
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Fig. 1. Exampleof a hyperspectraldatacube(Moffett Field): Thefront of the
cubeis a color compositeof threespectralbandswhile theothersidesdisplay
thespectraof thesidepixels.

Signiýcantconstraintslimiting the performanceof a new

instrumentare the available transmissionbandwidthand the

on-boardstoragecapacity. The compressionstep, therefore,

becomesa crucial partof theacquisitionsystemasit enhances

the ability to store,accessand transmit information. Ideally,

the compressionshould be losslessto ensurepreservation of

the scientiýcvalue of data. However, losslesscompression

techniquesprovide compressionratios of about two or three,

a limitation which is enforcedin thehyperspectralcasedueto

thenoiseinherentlypresentis suchhigh-resolutionsensors[1].

Nearlosslesscompressionbecomesanincreasinglyacceptable

choiceduring thesensordeýnition.

Hyperspectralimagery, or spectral imagery, involves ob-

serving the same scene at different wavelengths (Fig. 1).

Typically, each image pixel is representedby hundredsof

values, correspondingto various wavelengths.Thesevalues

correspondto a samplingof the continuousspectrumemitted

by the pixel. This samplingof the spectrumat very high res-

olution allows pixel identiýcation(materials,minerals,gases,

etc.).Theavailability of thespectralinformationfor eachpixel

leadsto new applicationsin all ýeldsthat useremotesensing

data (agriculture,environment, or military), and can help to

improve the understandingof the solar system (mineral or

gasidentiýcation).Hyperspectraldataare in a way similar to

video data,where wavelengthcorrespondsto time, but their

statisticalpropertiesaredifferent: thereis no motion between

hyperspectralspectralplanesbut changesin color, asillustrated

in Fig. 2.
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ÅHuge data volumes
Å11 TB/day from Planet Labs alone

ÅHigh-dimensional data
ÅMultispectral, hyperspectral
ÅFrequent revisit times
ÅLandsat: 16 days

ÅSentinel-2: 5 days

ÅPlanet Labs: daily or sub-daily

ÅNon-trivial interaction and pre-processing
ÅCloud removal
ÅOrbital track
ÅInterpolation/smoothing 
ÅCo-registration



ML: unlocking potential of satellite data 

3-day timelapse of fires burning in Brazilian 

Amazon. Credit: Planet, Inc.
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Before and after Sentinel-2 images of Palu

earthquake in Indonesia, 2018. 

Credit: ESA/CESBIO

ÅHuge data volumes
Å11 TB/day from Planet Labs alone

ÅHigh-dimensional data
ÅMultispectral, hyperspectral
ÅFrequent revisit times
ÅLandsat: 16 days

ÅSentinel-2: 5 days

ÅPlanet Labs: daily or sub-daily

ÅNon-trivial interaction and
ÅCloud removal
ÅOrbital track
ÅInterpolation/smoothing 
ÅCo-registration



ML: unlocking potential of satellite data 

ÅHuge data volumes
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Sentinel-2 Time Lapse (Cropped)

Harmonized Landsat and Sentinel-2 (HLS) 

Credit: USGS/NASA

Blank pixels = 

no data (satellite 

track) or clouds



Monitoring agriculture in satellite data
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Estimate production

Forecast yields

Detect disease and pests 

Estimate conditions

Prescribe inputs/practices

Crop type 

mapping

Corn Soybeans



In-season crop type mapping

ÅHighest uncertainty during 
growing season, especially 
anomalous years
Å2019: planting delays due to 

flooding in spring

Å2020: delayed surveys due to 
COVID-19 travel restrictions

ÅGoal: map crop types and 
planting timelines using satellite 
data

13

Flooded croplands in Iowa, spring 2019

J. Schaaf



In-season crop type mapping in US Corn Belt

ÅSatellite data: Harmonized Landsat 
and Sentinel-2 (HLS) dataset
Å30m/pixel resolution

Å3-5 day revisit time

ÅMultispectral (visible to shortwave IR)

ÅPublicly available
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