Agents of the Regime? Electoral clientelism and traditional leaders in South Africa

Daniel de Kadt† Horacio A. Larreguy‡

Abstract

In many developing democracies traditional leaders are afforded sub-national territorial authority. Though ubiquitous, the political consequences of their power has received little rigorous attention. In particular, traditional leaders, whose power often depends on the national state, may be incentivized to strategically support political parties who can guarantee their survival and provide them with rents. We study this clientelistic “quid pro quo” in the Apartheid-era independent ethnic homelands of South Africa, or “Bantustans”. Using two sources of variation – the 100-year old borders of the Bantustans and contemporary shifts in ties between traditional leaders and political elites – we find that empowering traditional authorities can have significant electoral consequences. Our estimates suggest that traditional leaders in South Africa provide electoral benefits of roughly 6.5 percentage points to the ruling African National Congress (ANC), a party which has protected traditional rulers both politically and legislatively since the end of Apartheid. We then investigate two potential mechanisms that have received attention in much recent work.
1. Introduction

From sub-Saharan Africa to south-east Asia, unelected leaders are often afforded sub-national territorial authority. This phenomenon is particularly evident in Africa, where “chiefs”, or traditional leaders whose immediate legitimacy resides in historical socio-cultural custom, serve as unelected leaders (Lange, 2009; Logan, 2009; Acemoglu et al., 2013; Baldwin, 2013; Koter, 2013; Logan, 2013). Many countries in sub-Saharan Africa have passed legislation formally recognizing substantial de jure roles for traditional leaders; others provide more informal de facto authority through the absence of state intervention (Herbst, 2000). While the virtues and dangers of ceding authority to traditional leaders are the focus of scholarly debate in multiple disciplines (Mamdani, 1996; Goldstein and Udry, 2008; Acemoglu et al., 2013), studying their effects presents a difficult inferential challenge. This study shows that traditional leadership structures can have profound political consequences: they are able to distort democratic processes to favor certain parties. Though much qualitative and descriptive evidence that suggests traditional leaders may play a role in shaping electoral behavior (Scott, 1972; Callahan and McCargo, 1996; Baldwin, 2013; Koter, 2013), we provide the first causally identified evidence of electoral clientelism among traditional leaders.

We first provide an explanation for why traditional leaders engage in this behavior. Perverse incentives in both local and national political spheres drive a political dynamic in which political parties ensure traditional leaders’ legal tenure, which is often tenuous in young constitutional democracies, in exchange for votes. The dynamic, which we term a political “quid pro quo”, is unique to traditional leaders because their legal legitimacy is often fragile. We then present empirical evidence of the effect of traditional leaders on electoral outcomes in the case of South Africa. Here, traditional authority structures remain powerful and ever-present in the modern era; in fact, their power has expanded over time. Our study considers the legacy of the Apartheid-era independent ethnic homelands, or “Bantustans”, which served to consolidate the authority of traditional leaders in South Africa over an 80 year period. We find that traditional leaders in South Africa provide electoral benefits of roughly 6.5 percentage points to the ruling African National Congress (ANC). This, we argue, is in exchange for the political and legislative protection provided by the ANC since the end of Apartheid.

To identify these effects we exploit two sources of variation. First, we use variation around the 100-year old borders of the Bantustans in a geographic regression discontinuity (GRD) framework. We compare electoral

1 In poorer developing democracies these unelected leaders command great power: they may adjudicate legal disputes, oversee development initiatives, distribute land and resources, or preside over important social and cultural activities (Scott, 1972; Clapham, 1982; Schatzberg, 2001; Baldwin, 2011; Baland and Robinson, 2012).

2 Traditional authority structures, both contemporary and historical, are often endogenous to macro- and micro-political and economic outcomes.
outcomes in geographically proximate places that differ with respect to their status as former Bantustans. Second, we use a contemporary shift in the ties between traditional leaders and political elites, and estimate the effects of this switch on electoral outcomes using a difference-in-differences strategy within the mentioned GRD framework. Both approaches reveal, approximately, a 6.5 percentage point effect of traditional leaders on ANC vote-share. We then investigate two recently studied channels through which traditional leaders exert influence over voters. First, we find that traditional leaders do not engage in turnout buying, and rely instead on influencing the choices voters make once at the polls. Second, in the context of much work in African politics that stresses the importance of ethnic ties, we find that ethnic networks, while important in South African electoral politics, cannot account for the effect of traditional leaders on electoral outcomes. Indeed, clientelistic traditional leaders in South Africa do not appear to rely on ethnic networks.

This study is of particular importance as it informs active policy debates in sub-Saharan Africa. Legislation is currently under review in South Africa to further entrench the role of traditional leaders, and similar legislation has been tabled or passed in other countries\(^3\). The findings of this research suggest that such legislation poses a danger to electoral democracy and, potentially, the well-being of those who live under traditional authority structures.

Our broader contributions are thus threefold. First, we provide some of the first conclusive evidence that traditional authorities engage in clientelistic behavior. Second, we offer insights into two mechanisms that have received increased attention in the study of clientelism in recent years. We find no evidence that traditional leaders engage in turnout buying, and no evidence that they rely on ethnic networks. Finally, we offer a theoretical explanation of the behavior of traditional leaders, which ties their behavior to national level politics and policy. We also find evidence that suggests the importance of economic and ethnic considerations as components of vote choice in contemporary South Africa, which corroborates previous research. While both are important considerations for voters, neither can account for the effect of traditional leaders, whose role appears clientelistic.

We proceed as follows. In Section 2 we outline the historical origins of the Bantustans, and discuss the role of traditional leaders in the modern South African context. In Section 3 we introduce our two empirical strategies and our data. Section 4 presents the results of the first empirical strategy, and Section 5, the results of the second. Section 6 presents empirical assessments of two potential mechanisms. Section 7 probes the robustness of the findings and our interpretations, and Section 8 concludes.

\(^3\)Herbst (2000) reports that by 2000 14 of Africa’s new democracies had created legislation to protect the existence of chiefs.
Though important in the lives of many people, traditional authority structures often find the origins of their power in early colonial rule. Colonial authorities, in particular the British but also the French and Portuguese, co-opted local traditional structures into more formal colonial institutions. This allowed the colonial authority to delegate power downward and govern from afar (Crowder, 1964; Geschiere, 1993; Lange, 2004, 2009). After independence, and then democratization, many traditional authorities maintained their now deep-rooted positions of power, often with either the implicit or explicit blessing of national political elites. In South Africa, the Apartheid-era Bantustans, or ethnic homelands as they are sometimes called, were no exception to this pattern (Welsh, 1971; Costa, 2000). In fact, the Bantustans represent one of the largest social engineering exercises in human history, and were premised on the idea of empowering traditional leaders as agents of the regime. Over an 80 year period white South African political elites stratified South Africa into geographically discrete areas. Ten such areas were set aside for particular black ethnic groups. While over 80 per cent of the country’s land was reserved for its small white population, the majority black population was forced to live in the Bantustans.

In service of the Apartheid government’s ideology of “separate development”, the Bantustans were given formal recognition. They were afforded improverished electoral, parliamentary, and administrative institutions, and traditional leaders were given, or assumed, substantial authority (Mamdani, 1996). This process of forced devolution culminated in sub-national “independence”, essentially empowering local leaders as despots and, implicitly, as agents of the Apartheid regime. In the early 1990s, as Apartheid ended, the Bantustans were formally dissolved and legally re-integrated into South Africa. Constitutionally, and then legislatively, they were transformed into “Traditional Authority Areas”, in which many of the same chiefs and paramount chiefs who had been empowered under Apartheid were allowed to maintain, and in some cases even expand, their authority. As of writing, a major and heavily contested legislative bill that further entrenches the authority of traditional leaders are under consideration by the South African parliament, the Traditional Affairs Bill (RSA, 2013a).

2.1. Colonial origins of the Bantustans

As early as the mid-19th century, white colonists (both English and Afrikaans) in what would become South Africa had engaged in large-scale forced displacement of black Africans. South Africa, like a number of other

4Also, during the course of writing, a highly contested bill that sought to make traditional courts more powerful in adjudicating legal disputes, the Traditional Courts Bill, was under consideration by Parliament but was finally jettisoned (RSA, 2013b). Speculation in the South African media is that parts of this bill may make their way into the Traditional Affairs Bill.
African colonies, presented a demographic puzzle to colonial rulers. The country, or as it was at that time, the collection of colonies, was in possession of vast natural resources and wealth, and European immigrants had settled in large numbers. At the same time, the European population was dramatically outnumbered by the African population, who were simultaneously a military and political threat, and a deep pool of cheap labor.

Following the bloody wars of the late 19th century, the various colonies of South Africa were unified in 1910. Shortly after, the white leadership began instituting formal geographic segregation to solve the demographic puzzle. At first, the stated intention was to define the limits of African ownership of land. The first major legislative act that regulated the ownership and distribution of land on the basis of race was the 1913 Natives Land Act. This defined the borders of a number of “homelands” for black South Africans, and restricted their rights to own or transfer property to only those areas. These borders, which would later be extended in 1936 in the Native Trust and Land Act, served as the basis for all future legislation on geographic segregation and land ownership.

2.2. Subnational authoritarianism and the independent Bantustans

Shortly after the National Party (NP) victory in the 1948 election the Bantustans emerged as a central part of South African political planning. The Apartheid government, first under D.F. Malan and then famously Hendrick Verwoed, embraced an ideology known as “separate development”. South Africa was envisioned as comprising two distinct “parts”: a state for whites, and a “separate but equal” set of states for black South Africans. In practice the reality was far darker, and the black areas of South Africa suffered from tremendous under-development in contrast to white areas. The Bantustans, presented in Figure 1, thus served dual roles in the eyes of the NP. First, they were a central tool for the economic domination of land by white South Africans, and the protection of the ideological commitment to separate development.

They also served an invaluable tool for political repression. While political opposition to white rule had existed in various forms since the mid 19th century, it gained organizational capacity and energy in the 1950s, on the back of the development of, primarily, the ANC and the Pan-African Congress (PAC). The 1950s saw the emergence of protests from within the black heartlands of South Africa, and the Bantustans were used to suppress these movements indirectly (Bank and Southall, 1996). Thus, without extending its arms into the deepest recesses of rural South Africa, the Apartheid regime was able to control rural opposition movements, and focus its military and political attention on urban uprisings and border disputes.

As a result, the Apartheid government divested substantial sub-national autonomy to the leaderships
Figure 1: The Bantustans
of the Bantustans – in return they would suppress opposition from within the homelands. By 1971, the Apartheid government had begun the process of granting independence to the Bantustans, essentially creating sub-national states within South Africa. While no members of the international community recognized their independence, South Africa did, and in fact terminated the citizenship of their inhabitants, granting them citizenship of their respective Bantustans.

It was also during this time that the Bantustans took on a distinctly ethnic dimensions. The Apartheid government supposed that dividing the black population into ethnically distinct groups would undermine opposition movements that appealed to pan-Africanism or black nationalism. This, again, accorded with their particular ideology – that races were better kept separate. As a result, the regime classified all people into not only race groups but sub-racial ethnicities. Black South Africans were then forcibly displaced, both from rural areas and from urban areas, to more “appropriate” Bantustans depending on their ethnic classification. The ethnic specificity of the Bantustans persists to this day: the 2011 National Census shows high levels of linguistic homogeneity within each former Bantustan (language serving as a reasonable proxy for ethnicity).

2.3. The collapse of Apartheid

As with many traditional leaders co-opted by indirect colonial rule, the Bantustan leaders lived a precarious existence. They were, at once, agents of the Apartheid regime, drawing rents from the national government and aiding in its policy of “separate development”, and leaders of deep traditional communities. They thus faced political pressure from above and social pressure from below. Indeed, toward the end of the 1980s a number of small-scale coups had occurred in the Bantustans, and uprisings were either in progress or in the making in many others. As the inevitability of Apartheid’s impending collapse became clear in the late 1980s, the leaderships of the Bantustans found themselves trapped: they were fiscally and institutionally dependant on the Apartheid government, but clearly had to make peace with their own communities over their historical complicity in the regime. It was against this backdrop that many traditional leaders began a process of simultaneously courting ANC elites (to protect their status in the post-Apartheid era), and publicly advocating for an end to the Bantustan system (to placate their communities).

In 1987, the chiefs and headmen of the KwaNdebele Bantustan, a northern homeland to the Ndebele people, formed the Congress of Traditional Leaders of South Africa (CONTRALESA). The organization was designed to provide a forum for the coordination of traditional leaders opposed to the Bantustan system. The strategic intention was to bridge the divide between the chieftancy and the ANC. By the 1980s the ANC,
along with the United Democratic Front (UDF), had determined that the chieftancy was anti-modern, anti-
democratic, and essentially corrupted by greed and power (van Kessel, 1993). To overcome this threat,
CONTRALESA, which exists to this day as a lobby group for traditional leaders, aligned itself closely with
the ANC. The historical record suggests that CONTRALESA was largely successful in ingratiating the chiefs
with the ANC; Nelson Mandela personally welcomed its official formation in 1990, and famously “greeted”
traditional leaders on his release from Pollsmoor prison. By 1992 CONTRALESA was a fully national
endeavour, embraced by all of the Bantustans save Chief Buthulezi’s KwaZulu. The case of KwaZulu is
importantly unique in South Africa. We discuss it at length at various points in the paper.

While CONTRALESA was successful in bridging the gap between the chieftancy and the ANC, it was
not enough to placate the rural masses. This required an active intervention by the ANC, whose leadership
(including Mandela) would routinely visit rural South Africa in the early 1990s, shake hands with chiefs in
public, and comment on the importance of traditional leaders in reclaiming South Africa from Apartheid
(Bank and Southall, 1996). This intervention by ANC elites, it is argued, was instrumental in quelling social
uprisings in the Bantustans, and preserving the authority of traditional leaders (van Kessel, 1993; Bank and
Southall, 1996; Van Kessel and Oomen, 1997).

The ANC went a step further than simple public shows of support for the traditional authority structures.
While traditional leaders were excluded from CODESA (Convention for a Democratic South Africa) I and
the ill-fated CODESA II negotiations, they were eventually invited to the MNF (Multiparty Negotiating
Forum) in 1993. The Forum eventually produced the Interim Constitution of the Republic, in which legal
 guarantees were made for the existence of traditional leaders (section 11). These were later ratified, in
slightly weaker form, in the final Constitution in 1996 (section 12)\(^5\).

As a result, parts of the former Bantustans were set aside as specially designated “Traditional Authority
Areas”, in which local leaders were reified and formally empowered. In 1997 Parliament revised the National
House of Traditional Leaders Act (first passed in 1994), which established a “parliament” for traditional
leaders to interface with elected officials. In 2003 it passed the encompassing Traditional Leadership and
Governance Framework Act, which laid the foundations for “democratic” traditional governance in the
Traditional Authority Areas. It also passed the Communal Land Tenure Act, which proposed to transfer
land rights to traditional communities (Murray, 2004; Ntsebeza, 2005). The heavily contested Traditional
Courts Bill then emerged in 2008, followed by the Traditional Affairs Bill in 2013.

\(^5\)In line with our theory that traditional leaders are particularly threatened in new democracies because of their tenuous legal
status, it is interesting to note that the Constitutional Assembly (which drafted and ratified the 1996 Constitution) and the
Constitutional Court have both rejected the role of the chieftancy in South Africa’s representative democracy. This behavior
by independent arms of government is at odds with the behavior of the Parliament and the Executive, led by the ANC.
The historical record suggests, then, that both the chiefs and the ANC were very strategic in their switch in mutual support, as well as the policies they pushed forward. The ANC strategically shifted itself from an anti-chief, anti-Bantustan party, to a pro-chief advocate (Ntsebeza, 2005). Simultaneously, the chiefdoms shifted from Apartheid lackies to ANC supporters (Van Kessel and Oomen, 1997). Both shifts occurred against the backdrop of popular disapproval of the chiefs, as well as concerns over their constitutional and legal status. Further, the timing of the 1997 and 2003 Acts suggests that the ANC places the rights of traditional leaders on the legislative agenda in the run-up to elections (1999 and 2004 respectively). It seems unsurprising that the Traditional Courts Bill emerged on the agenda just prior to the 2009 election, and that the Traditional Affairs Bill emerged in 2013, in anticipation of the 2014 National General Election.

2.4 The power of traditional leaders

Does the de jure authority afforded by the ANC, and the de facto power derived from tradition and custom, truly empower traditional leaders in South Africa? Qualitative evidence suggests that it does, and that traditional authority structures play a large role in shaping the lives of those who live under them (Ntsebeza, 2005; Oomen, 2005). This is particularly true given limited successes in the development of local government institutions (Murray, 2004). If the central government fails to extend its authority into deep rural areas, then traditional leadership structures are able to fill the vacuum created.

Quantitative survey evidence also corroborates this account. Intersecting geo-referenced Afrobarometer data and the polygons for the Bantustans allows us to examine the political views of South Africans who live in traditional authority areas. These South Africans tend to see traditional leaders as powerful local elites. In the 4th round of the Afrobarometer series (completed in 2008), 19% of South Africans living within the borders of the former Bantustans say that traditional leaders solve local disputes, 33% believe that they allocate land rights, and 48% say that they influence local governing. Further, 89% of these people believe that the powers afforded to traditional leaders are either staying steady or increasing (Afrobarometer, 2008). Further, in many rural areas electoral polling stations are local tribal courts, potentially magnifying the salience and power of traditional leaders when citizens vote.

It is unsurprising, then, that many South African chiefs claim that they can influence the electoral behavior of their people. As Chief Mwelo Nonkonyama of the Transkei claimed ahead of the 1999 elections, “...my people know where I stand politically... Because they trust me, then they will vote for my party” (quoted in Van Kessel and Oomen (1997)). More recently, Prince Mangosuthu Buthelezi said of the ANC, “[t]hey have courted traditional leaders for the purpose of securing electoral support and will continue to do this”
These words are not alone in suggesting that chiefs can influence voters. Chief Mhlubunzima Maphumulo, then president of CONTRALESA, declared in 1990 that “[O]nce a chief has identified himself with us (CONTRALESA), then we know that the whole tribe or the majority of the people in that area are now with the progressive forces (the ANC).” This suggests, along with the ANC's sudden and remarkable change the issue of the Chieftancy in the newly democratic South Africa, that a political deal was struck in the early 1990s. In exchange for the protection and empowerment of traditional structures, the ANC would receive electoral support. While qualitative evidence and the historical record both suggest our theory of political “quid pro quo” is plausible, we offer two quasi-experimental tests of the effect that chiefs have on electoral outcomes in South Africa.

3. EMPIRICAL STRATEGY AND DATA

We now present our two empirical strategies and data. In what follows, all analyses are conducted at the level of the “political ward”, the lowest political unit in South Africa. Wards, of which there are around 4000 in South Africa, are clustered into municipalities, of which there are around 260. The municipality controls local governance and local budgetary decisions, and so we cluster all standard errors at the level of municipality in all analyses.

3.1. BANTUSTAN BORDERS AS A GEOGRAPHIC REGRESSION DISCONTINUITY

Our first empirical strategy for identifying the effect of Bantustans and their chiefs on ANC vote-share exploits the historical borders of the Bantustans as a geographic regression discontinuity (GRD). We treat physical space as the forcing variable, and employ a flexible expansion of two-dimensional coordinate space using latitude and longitude (Dell, 2010). In doing so we smoothly control for the variables that jointly induce treatment assignment, thus controlling for confounders that are also predicted by geography. Throughout this paper the results presented use cubic polynomial expansions of the forcing variable, though the substance of the main results are virtually unchanged by linear and quadratic expansions.

The central specification for estimating the border discontinuity effect of the Bantustans is:

\[Y_{it} = \alpha + \beta D_i + \theta Z_i + \gamma W_i + \delta_t + \delta_{\text{border},t} + \epsilon_{im} \]

6We tested three expansions of latitude and longitude as \(x \) and \(y \) coordinates. (1) Linear: \(x + y + xy \). (2) Quadratic: \(x + y + xy + x^2 + y^2 + x^2y + x^2y^2 \). (3) Cubic: \(x + y + x^2 + y^2 + xy + x^3 + y^3 + x^3y + y^3x + x^3y^2 + y^3x^2 + x^3y^3 \).
Where i is an electoral ward, t is an election year, m is a municipality, and border is a particular Bantustan-border. D is an indicator of Bantustan status, Z is a matrix of ward-level covariates, W is a matrix of flexible geographic coordinates, δ_t are year fixed effects, and $\delta_{\text{border}, t}$ are Bantustan-border-year fixed effects. Y_{it} is the ANC vote-share in ward i and year t. All standard errors are clustered at the municipal level. We move the inferential strategy away from a pure parametric approach by limiting the data to observations near the border, thus semi-parametrically estimating treatment effects. For completeness we present results for 50km, 10km, and 1km bandwidths around the discontinuity, though our preferred specifications use the 1km bandwidth.

β gives the effect of the Bantustans on ANC vote share7. β can be interpreted as the effect of moving from having no part of a ward intersect with a Bantustan to having the entire ward inside a Bantustan’s borders.

The identifying assumption is that within a narrow boundary around the border discontinuity, after controlling for a flexible expansion of latitude and longitude and a battery of demographic and economic covariates, any given ward’s potential outcomes are uncorrelated with the exact location in space. That is, had a ward that falls just inside a Bantustan border fallen instead just outside (or vice versa), its potential outcomes would remain unchanged. In the results section we offer evidence to assess the validity of this assumption. The identification strategy relies on the inclusion of demographic and economic covariates because, as discussed later, a number of covariates are discontinuous at the borders. This is the mechanical result of Apartheid’s policies, which sought to segregate, disempower, and systematically under-develop black South Africans.

3.2. Shifts in ethnic ties

Our second inferential strategy exploits variation over time in political ties between traditional leaders and political elites in the ANC. This strategy serves two purposes. First, it provides a check on the identification strategy outlined above. While the discontinuity in covariates at the borders might confound our baseline GRD estimates, this alternative specification is not subject to that problem. Second, this strategy provides some insights into a mediating channel for clientelism – particularly that ethnic ties between leaders and the party elite are important.

We consider the case of the historical KwaZulu Bantustan, in the province of KwaZulu-Natal. We rely

7In the specifications presented here D measures the share of a ward’s area that falls within a Bantustan. The variable is thus continuous between 0 and 1, and is bimodal (with clustering at either end of the range. The results are essentially unchanged by using a dummy in lieu of a continuous share.
on two sources of variation. First, we identify off the variation in ANC elite composition over time, and the effect that the 2007 “palace coup” had on ties between political elites and traditional leaders. While the ANC has always been a traditionally multi-racial and multi-ethnic party (Ndletyana, 2008), Zulus have been a divisive ethnicity since the late 1980s (van Kessel, 1993). Zulu elites, who represent the largest ethnic group in South Africa, have often claimed that the ANC is a Xhosa-centric organization, and that it does not cater to the needs of KwaZulu-Natal (the province that is home to the Zulu people), or to Zulus within the party. While many Zulus do support the ANC, their support is divided; many have traditionally supported the Inkatha Freedom Party (IFP) and its leader, Prince Mangosuthu Buthulezi (who ruled the KwaZulu Bantustan as Chief Minsiter from 1970 to 1994).

In 2007, at the Polokwane Conference in Limpopo, a faction of the ANC launched a party coup that displaced Thabo Mbeki (an ethnic Xhosa) as sitting President of the party, replacing him with Jacob Zuma (an ethnic Zulu). In late 2008 the ANC then “recalled” Mbeki as President of the Republic, an extraordinary act and the first of its kind in South Africa’s young democracy. Mbeki was briefly replaced by interim President Kgalema Mothlante, and Jacob Zuma was then inaugurated after the 2009 National General Election. South Africa, while a nominally parliamentary regime, vests a great deal of centralized power in the hands of the President. In turn, given the ANC’s dominance of South African politics, the President of the party and the President of the Republic tend to be one in the same. Zuma’s ascendency represented the first time in 40 years that the ANC was to be led by a Zulu – Mbeki, Mandela, and Tambo, who had led the party in succession since chief Albert Luthuli’s death in 1967, were all Xhosa. It also represented the first time a Zulu would be President of the Republic.

We estimate the effect of a shift to a Zulu ANC presidential candidate on the behavior of Zulu traditional leaders, who were previously captured by the IFP. Thus, through a shift in the ties between ANC elites and a group of previously “outsider” traditional leaders (bringing them “inside”), we can estimate the effect of traditional leaders on ANC vote-share.

The second source of variation we exploit, as in the previous specifications, is the border discontinuity. Essentially, the effect that we wish to estimate in the difference-in-differences design within the GRD framework is identified off the interaction – we assume that both the exogenous shift in ANC elites and the assignment to treatment (KwaZulu or other Bantustans) or control (the rest of South Africa) at the borders are ignorable. The result, then, should be interpreted as the effect of the shift to a Zulu ANC president on the effect of the Bantustans on ANC vote-share. To test the effect formally we implement the following regression, which is essentially a difference-in-differences within the GRD framework:
\[Y_{it} = \alpha + \beta All_i + \phi KwaZulu_i + \zeta \text{post} + \xi [\text{post} \ast All_i, \text{post} \ast KwaZulu_i]^\top + \theta Z_i + \eta [\text{post} \ast Z_i]^\top + \gamma W_i + \delta_{\text{border}, t} + \delta_{\text{bantustan}} \ast t + \delta_{\text{bantustan}} \ast t^2 + t + t^2 + \epsilon_m \]

Where, as before, \(i \) is an electoral ward, \(m \) is a municipality, \(t \) is an election year, and \(\text{border} \) is a Bantustan-border. For all elections we introduce a binary indicator \(\text{post} \), which equals 1 if election \(t \) occurred after 2007 (in practice this means either 2009 or 2011). \(All_i \) indicates the degree to which ward \(i \) shares geographic space with any Bantustan (in this case including KwaZulu), and \(KwaZulu_i \) indicates the same but specifically for KwaZulu. As before, \(Z \) is a matrix of covariates, \(W \) is a matrix of flexible geographic controls, \(\delta_{\text{border}, t} \) are Bantustan-border-year fixed effects. Further, to control for time trends in voting behavior, we include time and time squared, as well as their interactions with \(\text{bantustan} \) dummies. Importantly, note that in this specification all covariates are controlled for flexibly with respect to \(\text{post} \) through the term \(\text{post} \ast Z_i \). This allows for the effect of each covariate to vary in the pre- and post-periods, and consequently, lessens the concern that our estimates are driven by difference in covariates around the discontinuity.

As with any difference-in-differences design, our key identification assumption is that there are parallel trends in ANC vote share in the wards narrowly inside the KwaZulu border and the wards narrowly inside other Bantustan borders.

3.3 Data

Every five years South Africa’s wards are contested by councillors from different parties in winner-takes all elections. Our data includes 11566 ward-year observations for the elections in 2000, 2006, and 2011, with roughly 4000 unique wards per year\(^8\). We add ward-level electoral returns for the 2004 and 2009 National General Elections (which are straight PR ballots for the national parliament, but the votes are tallied at the ward level), bringing the total number of observations to 19576 over 5 election years.

We construct as our dependent variable the percentage vote-share of the ANC in each ward-year election. The variable ranges from 0 (where an ANC councillor contested the election but received no votes) to 1 (where

\(^8\)Wards are occasionally re-districted over time, but we see no reason to believe that the shifts affect our results.
an ANC councillor contested and won all votes). Any ward-year in which the ANC did not field a candidate is excluded from the data\(^9\). We then spatially intersected the ward boundaries and the historical Bantustans boundaries, and created variables indicating, for each ward, what fraction of its area falls within an historical Bantustan\(^{10}\). In general, all variables are coded with a range of 0 to 1 to allow for ease of interpretation.

To the electoral returns we added rich demographic and economic data from the 2011 South African Census, allowing us to control for slow-moving demographic and economic factors that may influence electoral outcomes. This is particularly important in that politics in South Africa is still very much racially divided – controlling for demographic features is important. We include the fraction of the population that is white, population shares for each major black South African ethnic group (backed out from language shares in the census data), population (logged), population density (logged), gender, unemployment rates, formal/informal sectoral shares, school completion rates, and household income.

4. Geographic regression discontinuity results

Next we introduce the results for the border discontinuity design. Here we focus on the substantive and statistical significance of the coefficient on the Bantustan share variable. We estimate the effect of two different sets of Bantustans – all Bantustans excluding KwaZulu and KwaZulu separately. The reasoning behind this, as outlined earlier, is that the chieftancy of KwaZulu has historically been aligned against the ANC and in favor of the IFP. We thus anticipate a different sign in KwaZulu – clientelism should be evident, but it should not favor the ANC.

4.1. Exogeneity of borders

Before presenting the results, we discuss the feasibility of the identification assumption that underpins this approach. One of the primary threats to the geographic regression discontinuity strategy is that the historical borders of the Bantustans may be endogenous to economic potential (and thus, to outcomes which correlate with economic success). White surveyors in the early 20th century may have cordoned off the best land for whites, and forced black South Africans into less productive agricultural areas. For this to confound our identification strategy it would have to be the case that the \textit{exact} locations of the borders predict these differences.

\(^9\)There are only 324 such observations in the entire data, and the results are robust to coding these cases as “0 vote share” and including them.

\(^{10}\)We did a similar exercise the the newer Traditional Authority Areas, creating indicators for the share of a ward that falls within a new Traditional Authority Areas. We present some results later in the paper examining the differences between these areas, but the results are essentially similar. We feel the Bantustans are the more appropriate choice for treatment assignment given that they dictated local power structures for 80 years.
To assuage such concerns we present two pieces of evidence. First, we consult the historical record, which suggests that the borders of the Bantustans were largely arbitrary. Second, to substantiate this claim we then offer empirical evidence, by assessing whether the borders discontinuously predict fundamental agricultural suitability.

While the former Bantustans are certainly situated in less desirable lands (particularly in that they are not in the highly productive Western Cape, which was colonized in the 17th century), identification rests only on the local neighborhood of the Bantustan borders. The historical record suggests that the original borders, first drawn in 1913 and then extended in 1936, were largely arbitrary circumscriptions around pre-existing traditional villages and towns. The borders were often extended until a white land owner protested. Thus the determination of borders was driven on both sides by economic concerns – black villages and homesteads were originally stationed in reasonably sustainable and prosperous areas, and the borders around them, while limiting and oppressive, were largely arbitrary in the local space. The result was that, by the 1940s, the homelands existed as numerous smaller pockets of territory. Finally, when the Apartheid government began its ideological campaign to create black sub-states, they unified the smaller pockets into single territories for each ethnic group, expropriating land from white farmers and black freeholders in reasonably equal measure.

This suggests that the borders themselves are largely arbitrary with respect to land quality. We assess this using data sources. First, we draw on data from the Food and Agriculture Organization of the United Nations on fundamental enabling factors affecting agricultural production, which we term quality11. Second, we rely on data on inherent land quality, which assesses land on its fundamental resilience and performance. We then test whether underlying agricultural suitability is predicted by the boundaries of the historical Bantustans, using the same regression framework outlined for the main border discontinuity results, though our unit of analysis moves to a higher resolution – small-area units from South Africa’s 2011 census.

As shown in Table 1, these regressions show no economically significant differences between the Bantustans and their surrounding border areas on any measures. Only the coefficient on KwaZulu for quality is marginally significant, but the magnitude – 0.053 of a standard deviation – is small and economically insignificant. These results lend credence to the historical narrative which suggests that, while the Bantustans themselves were strategically located to limit the access of black South Africans to resources, the borders themselves were arbitrarily drawn.

As discussed earlier, Apartheid had economic and demographic consequences for the Bantustans. To

11The data range from 2 to 14395, though for our purposes we standardized it to a mean of 0 and a standard deviation of 1. The data are based the following factors: “high rainfall potential, medium/low rainfall potential, degradation, slope > 30°, unreliable rain, low suitability and areas that are too cold or dry for agricultural production.”
Table 1: Fundamental land quality around local discontinuity

<table>
<thead>
<tr>
<th>Quality (FAO)</th>
<th>Resilience</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (excl KZ)</td>
<td>-0.009</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.167)</td>
</tr>
<tr>
<td>KwaZulu</td>
<td>0.053*</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Border FE</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1km only</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Spatial controls</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Observations</td>
<td>4602/3410</td>
<td>4136/3679</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses.

*** p-value < 0.01
** p-value < 0.05
* p-value < 0.1

illustrate this, we present the differences between treated and control areas in a number of economic and demographic covariates in Table 8 in the Appendix. This shows that there are systematic imbalances between wards just 1km inside the Bantustans and wards 1km outside. To partially address the fact that imbalances on economic and demographic covariates might confound our GRD estimates we include them as controls, but acknowledge that this represents only an imperfect solution. Thus, our most preferred estimates are those from the difference-in-differences strategy within our GRD framework, which are not susceptible to confounding in this way.

4.2. Results

Table 2 presents the main results from our first approach. There are three main columns, each of which presents a semi-parametric estimation of the effect. The first column presents our estimated effect size when we consider wards that fall within 50km either side of a border. The second column moves this bandwidth inward, to 10km. Finally, the third column presents our favored estimation strategy, in which we consider only those wards that fall at least partially within 1km of the border. Estimated coefficients for covariates and fixed-effects are omitted from the Table.

The estimates provide two main takeaways. First, the main result is an estimated 5.4 percentage point effect (in the 1km bandwidth, which is our preferred specification) of Bantustans on ANC vote-share. The

12While there are systematic differences, there are still many commonalities. Figure 4 in the Appendix shows that there is a good degree of common support on Demographic variables between treated and control areas 1km either side of the boundary. Similarly, Figure 3 shows the same for economic variables.
Table 2: Geographic Regression Discontinuity Estimates of Bantustans on ANC vote share

<table>
<thead>
<tr>
<th></th>
<th>50km only</th>
<th>10km only</th>
<th>1km only</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (excl. KZ)</td>
<td>0.041***</td>
<td>0.065***</td>
<td>0.054***</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.019)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>KwaZulu</td>
<td>-0.077***</td>
<td>-0.071***</td>
<td>-0.085***</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.018)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Border-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Covariates</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Observations</td>
<td>7308/3811</td>
<td>5126/3234</td>
<td>3625/2359</td>
</tr>
</tbody>
</table>

Parenthetical standard errors clustered by municipality.
*** p-value < 0.01
** p-value < 0.05
* p-value < 0.1

specification controls for demographic and economic covariates. This means that, for any given ward, falling inside any Bantustan border (excluding KwaZulu) has the effect of increasing ANC vote-share by 5.4 percentage points, ceteris paribus. Second, Table 2 shows that KwaZulu has a negative effect on ANC vote-share, roughly 8.5 percentage points. This is as predicted – the traditional leaders of KwaZulu have historically held an anti-ANC disposition, and are somewhat captured by the IFP, and this reflects strongly in their political behavior.

5. Difference-in-differences results

We now introduce the results from the difference-in-differences strategy within the GRD design. As noted previously, this assesses the difference in behavior of wards inside the KwaZulu Bantustan and wards inside other Bantustans in the wake of Jacob Zuma’s rise to power.

5.1. Parallel trends

Again, before presenting the results we demonstrate the validity of the identification assumption that underpins the results. In particular, the difference-in-differences design rests on parallel trends in the pre-treatment outcomes between control and treated units. Visual inspection of voting patterns in KwaZulu and non-KwaZulu Bantustans pre-2007 suggests that trends are roughly parallel, as suggested by Figure 2.

Additionally, we conducted placebo tests that show no divergence in pre-treatment trends between treated
and control. In particular, we move treatment assignment forward from the period 2007-2011 to 2006 and 2004 respectively, and then replicate the difference-in-differences estimations within the GRD framework. If parallel trends exist, the estimates (the interaction terms) should be precisely zero. The results of this test are available in Table 9 in the Appendix, and show precisely estimated zeros for the coefficients of interest. This suggests that the key identification assumption for the difference-in-differences estimation is satisfied.

5.2. Results

Table 3 presents the difference-in-differences estimates. As before, the estimation strategy is semi-parametric within given distances from the border. We present the results for the 50km, 10km, and our preferred specification, the 1km bandwidth. We omit from the Table the estimated coefficients for covariates, covariates*post, fixed-effects, time-trends, and time.

The difference-in-differences is given by the coefficient on post*KwaZulu, in row 4 of Table 3 (recall that in this specification AllBantustans includes KwaZulu, so any difference-in-differences between other the
Table 3: Difference-in-Differences Estimates of the ANC Ethnic Switch Effect

<table>
<thead>
<tr>
<th></th>
<th>50km only</th>
<th>10km only</th>
<th>1km only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post</td>
<td>-0.330</td>
<td>-0.273</td>
<td>-0.302</td>
</tr>
<tr>
<td></td>
<td>(0.235)</td>
<td>(0.296)</td>
<td>(0.339)</td>
</tr>
<tr>
<td>KwaZulu</td>
<td>-0.161***</td>
<td>-0.191***</td>
<td>-0.166***</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.032)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>All Bantustans</td>
<td>0.068***</td>
<td>0.087***</td>
<td>0.067***</td>
</tr>
<tr>
<td></td>
<td>(0.0159)</td>
<td>(0.022)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Post*KwaZulu</td>
<td>0.094***</td>
<td>0.107***</td>
<td>0.080***</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.034)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>Post*All Bantustans</td>
<td>-0.065***</td>
<td>-0.059**</td>
<td>-0.035*</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.023)</td>
<td>(0.019)</td>
</tr>
</tbody>
</table>

Border-Year FE	✓	✓	✓
Covariates	✓	✓	✓
Post*Covariates	✓	✓	✓
Linear TT	✓	✓	✓
Quadratic TT	✓	✓	✓
Observations	11119	8360	5984

Standard errors clustered by municipality.

*** p-value < 0.01
** p-value < 0.05
* p-value < 0.1

Bantustans and KwaZulu is given solely by the coefficient on *post*KwaZulu). The result suggests a strong effect of Jacob Zuma’s ascendancy on electoral returns in wards just 1km inside the KwaZulu Bantustan versus wards 1km outside, as compared to wards just inside versus wards just outside other Bantustans. The difference-in-differences is estimated to be roughly 8 percentage points in the 2009 and 2011 elections, a major change in voting behavior in the province of KwaZulu-Natal. While slightly larger than the effects estimated previously, this effect size is very similar in magnitude to the effects estimated in the border discontinuity design. Note, crucially, that these estimates allow for the effect of the proportion of Zulu voters in a given ward on ANC vote-share to vary between the pre- and post-Zuma period. This means that the results presented in Table 3 are net of any ethnic voting effect in which Zulus swing toward the ANC (we return to this point later in the paper).13

In general, across both of these tests, we find that areas in which traditional authorities exist reward the ANC with somewhere between 5 and 8 percentage points more at the polls in each election, holding all else constant. What do these findings mean for South Africa? The number of South Africans living

13Figure 5 in the Appendix shows a reasonable degree of common support in Zulu Fraction between treated and control areas 1km either side of the KwaZulu Bantustan boundary.
inside the borders of the former Bantustans is roughly 17 million, approximately 31% of the country’s current population. Averaging across both effects, a 6.5 percentage vote boost from the former Bantustans translates into an extra 2 percentage points at the polls for the ANC nation-wide each year. This implies that the effect of traditional leaders on South Africa’s electoral democracy is a pro-ANC distortion of around 8 seats in the national parliament (out of 400). This is an important difference in the South African context. For the past 3 election cycles the ANC has battled to maintain a two-thirds majority in parliament, for which it requires 267 out of the 400 available seats. In 1999 the ANC won 266 seats, in 2004 279 seats, and in 2009 264. The two-thirds majority is vital to the health of South Africa’s democracy; with it the party is able to unilaterally amend the Constitution in parliament. The two-thirds majority provides both explicit power and discrete bargaining power to the ANC by increasing the credibility of legislative threats. Given these narrow margins and high stakes, the role that traditional leaders play in shaping the ANC’s electoral fortunes should not be underestimated.

Of course, the electoral effects of traditional leaders are not only felt in the macro-political landscape. They most directly affect those South Africans who live in traditional areas. One central implication of our finding is that political contestation is often impossible in the former Bantustans. The outcomes of local government elections tend to be heavily one-party. Indeed, setting aside KwaZulu, the ANC won almost every ward in the former Bantustans in 2000, 2006, and 2011. This lack of competition probably means that opposition politics cannot take hold, that service delivery is likely to be stunted, and that the quality of democratic representation will lag behind the rest of the country.

6. MECHANISMS

Up until this point we have said little about how traditional authorities generate greater electoral returns for one party. While we certainly subscribe to conventional accounts that suggest traditional leaders use moral and legal authority to convince voters of how to behave, we believe that the mechanisms at play deserve greater empirical scrutiny. Here we contribute to this debate by investigating two potential mechanisms that have received increased attention in recent research.

First, we test whether traditional leaders increase ANC vote share by increasing turnout in the community or by shifting vote choices among the voters. A growing body of work in the clientelism literature suggests that brokers can engage in two forms of vote buying: vote-choice buying or turnout buying (Nichter, 2008). In the former, brokers induce voters to choose their party. In the latter, they induce greater turnout from those who support their party, thus increasing their party’s electoral returns. Second, we consider whether
traditional leaders use ethnic ties to encourage voters to choose the ANC. A large literature in African politics suggests that voters follow ethnic cues, either in choosing candidates, or in drawing on those around them (Eifert et al., 2010; Ichino and Nathan, 2012; Baldwin, 2013). Given that our earlier results confirm the existence of ethnic voting in the South African context, it seems plausible that traditional leaders, who lead ethnic communities, may activate ethnic networks to increase ANC support.

6.1. Vote buying or turnout buying?

Recent research suggests that brokers may engage in two forms of clientelism: either they buy votes, or they buy turnout among supporters. Buying turnout rather than votes has advantages for brokers; it solves a difficult monitoring problem when the ballot is secret (Stokes, 2005). Given the high levels of ANC support in the former Bantustans and the fact that South Africa has a secret ballot, it seems plausible that traditional authorities might choose either, or both, of these strategies.

We are able to test which strategy traditional leaders in South Africa adopt. To do so we use the exact same specifications outlined in the previous sections (the GRD and the difference-in-differences GRD), including the same covariates, fixed effects, and clustering procedures. We substitute as the dependent variable the total turnout – the total number of votes cast divided by the total number of registered voters.

Table 4: Do traditional leaders increase turnout?

<table>
<thead>
<tr>
<th>Specification</th>
<th>50km only</th>
<th>10km only</th>
<th>1km only</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRD (all excl. KZ)</td>
<td>-0.025***</td>
<td>-0.005</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>GRD (KwaZulu only)</td>
<td>0.010</td>
<td>0.009</td>
<td>0.017***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.008)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Post*KwaZulu</td>
<td>-0.008</td>
<td>-0.031*</td>
<td>-0.007</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.015)</td>
<td>(0.015)</td>
</tr>
</tbody>
</table>

Standard errors clustered by municipality.
*** p-value<0.01
** p-value<0.05
* p-value<0.1

Table 4 presents the results of these tests. Each row presents the estimated effect in one of the three specifications. The first row shows the effect in the GRD framework for all Bantustans excluding KwaZulu,
and the second row shows the same but for only KwaZulu. The third row shows the difference-in-differences
estimate (the coefficient on the interaction term).

Essentially, little evidence emerges to suggest that traditional leaders seek to increase turnout\(^\text{14}\). The
only case with consistent results as the bandwidths close is KwaZulu, and even here statistical significance
only emerges at the 1km bandwidth. Given the strength of traditional leaders in KwaZulu (on the basis
of the results presented earlier), it may be possible that turnout buying occurs in these cases, but not in
the rest of the country. Broadly, however, we interpret these results as suggesting that traditional leaders
depend on inducing voters to choose the ANC at the polls.

6.2. Ethnic networks

Next, we test whether ethnic networks play a role in traditional leaders’ influence over voters. As noted
earlier, the former Bantustans were set up as ethnic homelands, and as a result, ethnic homogeneity is high
within their borders. Similarly, the chiefs that rule over the areas within any given Bantustan’s borders tend
to be of the same ethnicity. Further, it is often reported that voters follow ethnic cues in African elections,
which suggests that ethnicity is a strong guiding influence in voting decisions. It thus seems plausible that
traditional leaders use ethnic ties to activate ethnic networks when engaging in clientelism. This seems
particularly plausible in the South African case. In both of our empirical strategies we find evidence of
voting behavior being explained by racial composition. In particular, the difference-in-differences estimations
presented in Section 5 suggests that ethnic voting is alive and well in South African politics. In these earlier
specifications, omitted estimates show a strong effect of Jacob Zuma’s rise to power on the vote-share in
wards with high levels of Zulu voters.\(^\text{15}\)

At the same time, these results also suggest that pure ethnic voting cannot explain our results. Ethnic
shares are controlled for, both in the GRD framework and then flexibly with respect to post in the difference-
in-differences strategy. It could be the case, however, that ethnic homogeneity is what matters. Previous
research has shown that high levels of ethnic homogeneity can have consequences for voting behavior (Ichino
and Nathan, 2012). Similarly, other work suggests that ethnic ties can improve coordination (Habyarimana
et al., 2007). While their theoretical account is different to ours, the general finding is that ethnic homogeneity

\(^{14}\)To further test for turnout buying we examined the possibility of “registration buying”. We calculated the registration rate
in wards – the number of registered voters divided by the number of citizens over 16 years of age (the minimum registration
age) as reported in the 2011 census. These results, not presented here, are similarly small and non-significant (either for the
full sample, assuming the 2011 census can be used to estimate the voting age population backward in time, or for only the 2011
election).

\(^{15}\)This effect is estimated by Zulu Fraction*Post, which gives a point estimate of 0.331 (0.122), a very strong ethnic voting
effect.
and dense ethnic networks can affect behavior and coordination. Given our findings, it could be that ethnically homogeneous areas are more easily “activated” by traditional leaders than more ethnically diverse areas.

We thus devised a test to detect whether ethnic networks are at work in the case of South African traditional leaders. First, we created a Herfindahl index of ethnic fractionalization for each ward. This potentially varies from 0 to 1, where 0 would indicate a perfect division of population between different ethnic groups, and 1 would indicate ethnic homogeneity. We then coded as ethnically homogeneous any ward in which one ethnic group is a majority (over 50% of the population share). We then interact both terms with the Bantustan indicator, and assess whether the effect of ethnic fractionalization and ethnic homogeneity on ANC vote share is different between Bantustan and non-Bantustan wards in the GRD framework:

\[Y_{it} = \alpha + \beta D_i + \zeta Frac_i + \eta Homog_i + \tau D_i \ast Frac_i + \phi D_i \ast Homog_i + \theta Z_i + \gamma W_i + \delta_t + \delta_{\text{border},t} + \epsilon_m \]

This specification allows us to identify whether the clientelistic effect of traditional leaders varies in the degree of ethnic fractionalization or ethnic homogeneity (or both).

If we consider our measures of ethnic fractionalization and ethnic homogeneity as good proxies for ethnic networks, the results presented in Table 5 suggest that ethnic networks are not a key mechanism in the case of South African traditional leaders. In the 1km specification, neither ethnic fractionalization nor ethnic homogeneity have statistically or substantively significant effects outside of the Bantustans. The interaction terms, while larger in magnitude, are not statistically significant at any conventional levels. If anything, homogeneity in ethnicity drives down the effect of traditional leaders, though the uncertainty estimates prevent us from drawing any strong conclusions. These results suggest that there is no systematic heterogeneity in treatment effects that is driven by ethnic networks. Thus, traditional leaders in South Africa do not appear to rely on ethnic networks to induce voters to side with the ANC.

These two findings suggest that traditional leaders rely instead on their formal and informal authority to induce voters to behave in certain ways. By controlling land resources, by having the power to adjudicate disputes, and by marshalling the authority granted by custom, traditional leaders are able to generate party loyalty, but only do so when the party is in turn loyal to them.

16While 50% is an arbitrary cutoff, any other number we could pick would be one too. What matters is that our results are robust to alternative cutoffs.
Table 5: Role of ethnic networks (excluding KwaZulu)

<table>
<thead>
<tr>
<th></th>
<th>50km only</th>
<th>10km only</th>
<th>1km only</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Bantustans (excl KZ)</td>
<td>0.096***</td>
<td>0.191***</td>
<td>0.123***</td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td>(0.049)</td>
<td>(0.040)</td>
</tr>
<tr>
<td>Ethnic Fractionalization</td>
<td>-0.077**</td>
<td>0.039</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.061)</td>
<td>(0.054)</td>
</tr>
<tr>
<td>Ethnic Homogeneity</td>
<td>0.046**</td>
<td>0.057*</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.034)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>Bantustan * Frac</td>
<td>0.034</td>
<td>-0.082</td>
<td>-0.062</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.059)</td>
<td>(0.056)</td>
</tr>
<tr>
<td>Bantustan * Homog</td>
<td>-0.089***</td>
<td>-0.082*</td>
<td>-0.030</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.042)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Border-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Covariates</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Observations</td>
<td>7308</td>
<td>5126</td>
<td>3625</td>
</tr>
</tbody>
</table>

Standard errors clustered by municipality.
*** p-value<0.01
** p-value<0.05
* p-value<0.1

7. Robustness

Next we assess the robustness of the findings. To do so we engage in two empirical exercises to test whether our results are driven by our choice of specification. We then discuss our interpretation of the results against two alternative explanations.

7.1. Alternative specifications

One concern may be that, despite the cubic expansion of latitude and longitude included in our specifications, the inferences drawn are from comparisons of non-contiguous units. Ideally, we wish to make inferences from wards as-if randomly allocated either side of the Bantustan border. Thus it may be preferable to compare only those wards that are contiguous – that sit adjacent each other across the border. To assess whether our findings emerge as a result of comparisons of non-contiguous wards we used a neighbor-matching approach within the GRD framework.

We computed all of the contiguous neighbours (wards that share a border with each other) for each of the treated wards. This gives a large number of possible control neighbors for each treated ward. We then calculated the multivariate Mahalanobis distance between a treated ward and each of its possible control
neighbors, using the economic and demographic covariates mentioned earlier. We then chose, for each treated ward in each year, \(n \) control wards that had the lowest distance of all neighboring wards for that year, and were thus the closest neighboring control wards. We then re-estimated our specification on this matched sub-sample, in the following framework:

\[
Y_{it} = \alpha + \beta D_i + \theta Z_i + \gamma W_i + \delta_t + \delta_{pair} + \epsilon_m
\]

Where all variables and indicators are the same as before, and \(pair \) indicates a unique matched pair fixed effect. Thus inferences about \(\beta \) are drawn from comparisons within matched pairs.

Table 6: Contiguous Matching Approach

<table>
<thead>
<tr>
<th>Bantustan</th>
<th>1 match</th>
<th>2 matches</th>
<th>3 matches</th>
<th>4 matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (excl. KZ)</td>
<td>0.045**</td>
<td>0.038**</td>
<td>0.041***</td>
<td>0.047***</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.015)</td>
<td>(0.015)</td>
<td>(0.014)</td>
</tr>
</tbody>
</table>

Year FE: ✔ ✔ ✔ ✔
Matched Pair FE: ✔ ✔ ✔ ✔
Covariates: ✔ ✔ ✔ ✔
Spatial controls: ✔ ✔ ✔ ✔
Observations: 7237 10879 14533 17777

Standard errors clustered by municipality.
*** p-value<0.01
** p-value<0.05
* p-value<0.1

The results, for \(n = 1 \) through \(n = 4 \), are presented in Table 6. While the point estimates are marginally smaller using this approach, the findings corroborate our earlier results.

A second potential concern is whether there is common covariate support in areas close to the Bantustan borders. To address this we re-estimated our original geographic regression discontinuity approach after pre-processing the data with coarsened exact matching. This ensures that our treated and control samples are balanced on covariates, and eliminates the risk that our results are driven by extrapolation outside of covariate support.

The results from this approach, presented in Table 7, are almost exactly the same as those reported in Section 4 of the paper.
Table 7: Coarsened Exact Matching Approach

<table>
<thead>
<tr>
<th>Bantustan</th>
<th>50km only</th>
<th>10km only</th>
<th>1km only</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (excl. KZ)</td>
<td>0.122***</td>
<td>0.095***</td>
<td>0.059**</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.026)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Border-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Spatial controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Multivariate L_1</td>
<td>0.046</td>
<td>0.031</td>
<td>0.027</td>
</tr>
<tr>
<td>Observations</td>
<td>1847</td>
<td>1079</td>
<td>767</td>
</tr>
</tbody>
</table>

Standard errors clustered by municipality.

*** p-value<0.01
** p-value<0.05
* p-value<0.1

7.2. Alternative explanations

We now consider two potential alternative explanations that could account for our results. First, it could be argued that our results are simply evidence of what Baldwin (2013) terms “voting with the chief”, rather than clientelism. While we certainly believe that some portion of voters may be engaging in a “sophisticated calculus about their interests” (p2) by choosing to vote with their chief, we doubt that this is the modal case in South Africa. Of course, finding that traditional leaders engage in clientelism need not contradict Baldwin’s (2013) arguments entirely. Both clientelism and “voting with the chief” may be at play in different segments of the voting population. Further, Baldwin (2013) examines the case of Zambia, and looks in particular at the relationship between chiefs and MPs and parliamentary candidates. South Africa, unlike Zambia, is a proportional representation system, and so individual chiefs have fewer direct connections to powerful public politicians than in Zambia. Instead, South African chiefs are connected to the party, a far more opaque and centralized structure. It is possible that the role of chiefs varies by electoral regime; this question deserves attention in future work.

Still, we have reason to believe that rural South Africans do not fully internalize that their chiefs are tapped into the ANC power structure, and thus that voting with them ensures better access to public goods. We would point to the fact that the former Bantustans are systematically under-developed across South Africa. They are generally mismanaged, and rural South Africans are aware of this. According to Afrobarometer figures, while in Zambia 73% of surveyed individuals trust in traditional leaders, only 45% do so in South Africa (Afrobarometer, 2008). In fact, recent public outcry from rural South Africans living
within the former Bantustans over the proposed expansion of traditional authority revealed that people see
the chieftancy as corrupt and incapable of promoting local development (Claassens, 2012). Voters in South
Africa, it seems, do not believe that their chiefs are necessarily the route to development, nor do the majority
explicitly trust them.

A second alternative explanation is that there is migration across the former Bantustan borders. This
could result in two patterns which would explain our results. Individuals who are pre-disposed to vote for
the ANC may choose to live inside the former Bantustans as opposed to outside of them. We find this story
particularly unlikely. While there is certainly some migration around the Bantustan borders, it seems highly
implausible that people from outside are moving in. As noted previously, the Bantustans tend to be poorer
and less well catered to in terms of public goods.

Alternatively, and perhaps more plausibly, individuals in the Bantustans who are pre-disposed to not
support the ANC may migrate outward. This seems plausible in general, but is unlikely to account for our
results. Given how strongly most rural South Africans support the ANC, the only voters who are potentially
pre-disposed to not support them are the youth, and even they do so at low rates. Further, most people
who migrate from rural areas are young South Africans who vote at incredibly low rates (between 20 and 40
percent, compared to 80 percent for voters over 40), so differences in the number of young voters are unlikely
to materially affect total vote shares dramatically.

We provide a hypothetical situation that illustrates that migration levels would have to be very high
to account for our effect sizes. Imagine two hypothetical neighboring wards, each with 100 voters. One is
inside and one is outside of a former Bantustan. Both wards tend to give the ANC 65% of their votes, or
a true treatment effect of 0 percentage points. To create a spurious 5 percentage point treatment effect by
outward migration, the following conditions would have to be met. First, at least 7 out of 100 voters within
the Bantustan would have to migrate out. Of these 7, all of them would have to be non-ANC disposed
voters. If just 2 of the 7 were ANC voters, the spurious effect declines to 2.7%. Assuming, perhaps more
realistically, that 3 of every 5 migrants is anti-ANC, the following conditions would have to hold: 18 per cent
of the voting population would have to leave. Factoring in a propensity to vote among the migrants that is
half the propensity of those not moving, migration would have to be in the region of 35 - 40%.17

Thus, for migration to account for our results, one of two conditions has to hold. First, outward migrants
could be nearly entirely anti-ANC voters. This is unlikely, given that two-thirds of voting South Africans
choose the ANC. Even if it were true, these migrants would have to leave in large numbers, and turn out at

17This may be a reasonable assumption given that young voters turn out at lower rates, as discussed above.
high rates. It is even less likely given that around 80 percent of all rural South Africans choose the ANC, and that around 75 percent of all black South Africans choose the ANC. Second, outward migration could be only slightly weighted toward anti-ANC voters, but could be enormous among the voting population. Given that the populations in the former Bantustans have stayed relatively constant (around 17 million), this degree of migration seems implausible.

8. Conclusion

South Africa’s Bantustans placed millions of people under institutionalised traditional authority for 80 years. In the post-Apartheid era an estimated 14.5 million people still live under formal traditional rule, and an estimated 17 million within the former Bantustan borders. The consequences of this massive feat of social engineering are both deep and long-term. We document how perverse incentives faced by both traditional leaders and political elites can induce collusive behavior in the form of clientelism. Traditional leaders, by dint of their tenuous existence in modern representative democracies, require the legitimacy, support, and beneficence of the state. Political elites, at the same time, require electoral votes. This study is the first to demonstrate that traditional leaders do indeed exert influence over voters, and that they do so in ways that favor powerful political parties. Our findings suggest that empowering traditional leaders can have dangerous consequences for electoral democracies, especially when those electoral democracies are dominated by hegemonic parties.

Traditional leaders as potential clientelistic brokers have received less attention in research than other forms of local unelected elites. Given the fact that traditional authority structures are ubiquitous in Africa, and common in south-east Asia, is somewhat surprising. Our results suggest that traditional leaders are able to exert great influence over voters. Crucially, we also show that traditional leaders have incentives to strike deals with powerful political parties, offering up votes in exchange for legislation that guarantees their tenure and expands their formal authority. This is an important insight – it suggests that offering traditional authorities formal recognition potentially opens a Pandora’s box. Granting traditional leaders formal recognition at once expands their power and authority and opens up the possibility of legislative protection and expansion of powers. This generates the possibility of a political “quid pro quo” which, we have shown, can have important electoral consequences.

In the case of South Africa we document that powerful parties are able to secure more support from voters living under traditional authority than voters living in otherwise similar areas. Further, we show that a shift in the ties between political elites and traditional leaders can secure a shift in electoral support in
those leaders' electoral wards. Together, both findings suggest that, on average, parties that are able to secure the support of traditional leaders whose authority is institutionalized can expect electoral benefits of around 6.5 percentage points. Our results are not limited to South Africa, as young democracies often empower traditional or cultural leaders. The findings presented here sound a warning call to developing democracies around the world.
References

Claassens, A. (2012). The traditional courts bill is a legal travesty.

9. Appendix

9.1. Appendix Tables

Table 8: Covariate Balance Within 1km Bandwidth

<table>
<thead>
<tr>
<th>Economic Covariates</th>
<th>Mean Treated</th>
<th>Mean Control</th>
<th>T pval</th>
<th>KS pval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment</td>
<td>0.56</td>
<td>0.35</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sector</td>
<td>0.78</td>
<td>0.78</td>
<td>0.53</td>
<td>0.00</td>
</tr>
<tr>
<td>School Completion</td>
<td>0.43</td>
<td>0.34</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Income</td>
<td>979.99</td>
<td>2193.52</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demographic Covariates</th>
<th>Mean Treated</th>
<th>Mean Control</th>
<th>T pval</th>
<th>KS pval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population(ln)</td>
<td>9.14</td>
<td>9.20</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Pop Density(ln)</td>
<td>5.03</td>
<td>3.77</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sex</td>
<td>0.53</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Whites</td>
<td>0.01</td>
<td>0.13</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>isiZulu</td>
<td>0.30</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>isiXhosa</td>
<td>0.22</td>
<td>0.13</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>isiNdebele</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sepedi</td>
<td>0.13</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sesotho</td>
<td>0.04</td>
<td>0.13</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Setswana</td>
<td>0.10</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Siswati</td>
<td>0.04</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Tshivenda</td>
<td>0.04</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>xiTsonga</td>
<td>0.06</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Table 9: Placebo Difference-in-Differences Estimates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50km only</td>
<td>10km only</td>
<td>1km only</td>
<td>50km only</td>
</tr>
<tr>
<td>Post</td>
<td>-0.390</td>
<td>-0.150</td>
<td>-0.048</td>
<td>-0.157</td>
</tr>
<tr>
<td></td>
<td>(0.350)</td>
<td>(0.431)</td>
<td>(0.455)</td>
<td>(0.228)</td>
</tr>
<tr>
<td>KwaZulu</td>
<td>-0.124***</td>
<td>-0.113***</td>
<td>-0.110***</td>
<td>-0.145***</td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.037)</td>
<td>(0.034)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>All Bantustans</td>
<td>0.041**</td>
<td>0.050**</td>
<td>0.041**</td>
<td>0.064***</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.023)</td>
<td>(0.019)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Post*KwaZulu</td>
<td>0.004</td>
<td>-0.014</td>
<td>-0.010</td>
<td>0.044**</td>
</tr>
<tr>
<td></td>
<td>(0.048)</td>
<td>(0.050)</td>
<td>(0.045)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>Post*All Bantustans</td>
<td>0.009</td>
<td>-0.001</td>
<td>0.001</td>
<td>-0.033***</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.029)</td>
<td>(0.027)</td>
<td>(0.013)</td>
</tr>
</tbody>
</table>

Border-Year FE | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
Covariates | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
Post*Covariates | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
Linear TT | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
Quadratic TT | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
Observations | 6013 | 4597 | 3291 | 6013 | 4597 | 3291 |

Standard errors clustered by municipality.
*** p-value<0.01
** p-value<0.05
* p-value<0.1
9.2 Appendix Figures

Figure 3: Economic Covariate Densities around all Bantustan borders (incl KZ)
Figure 4: Demographic Covariate Densities around all Bantustan borders (incl KZ)
Figure 5: Density of Zulu Fraction around KwaZulu border

Zulu Fraction

Density

- **1km Within KwaZulu (treated)**
- **1km Outside KwaZulu (control)**

36
Figure 6: Variation around Bantustan borders