Handwashing and Habit Formation: A Test of Rational Addiction

Reshmaan Hussam, MIT & Yale University

with Atonu Rabbani, Dhaka University
Giovanni Reggiani, MIT
Natalia Rigol, Harvard University

2016 Behavioral Economics and Global Health Conference
Handwashing with soap

• High rates of child stunting and mortality worldwide due to bacterial and viral transmission
 • Diarrheal disease, ARI
 • 3.5 million child deaths yearly (UNICEF, WHO 2013)

• Solution: handwashing with soap
 • “the most effective vaccine against childhood infections” (World Bank 2005)
 • potentially most cost-effective method of reducing incidence (Kremer and Zwane 2007)

• But handwashing rates abysmally low worldwide, especially during critical times. Why?
Handwashing with soap

- High rates of child stunting and mortality worldwide due to bacterial and viral transmission
 - Diarrheal disease, ARI
 - 3.5 million child deaths yearly (UNICEF, WHO 2013)

- Solution: handwashing with soap
 - “the most effective vaccine against childhood infections” (World Bank 2005)
 - potentially most cost-effective method of reducing incidence (Kremer and Zwane 2007)

- But handwashing rates abysmally low worldwide, especially during critical times. Why?
Handwashing with soap

- High rates of child stunting and mortality worldwide due to bacterial and viral transmission
 - Diarrheal disease, ARI
 - 3.5 million child deaths yearly (UNICEF, WHO 2013)

- Solution: handwashing with soap
 - “the most effective vaccine against childhood infections” (World Bank 2005)
 - potentially most cost-effective method of reducing incidence (Kremer and Zwane 2007)

- But handwashing rates abysmally low worldwide, especially during critical times. Why?
Barriers to adoption

- Not information.
- Not resources.

- Repetitive activity.
 - Repeated engagement is costly
 - ...unless it becomes a habit.
- Preventative activity.
 - Returns are not manifested.
 - Returns are in the future.

This applies to many preventative health activities: water treatment, medicine regimens, latrine and cookstove use, etc.
Barriers to adoption

• Not information.
• Not resources.

• Repetitive activity.
 • Repeated engagement is costly
 • ...unless it becomes a habit.

• Preventative activity.
 • Returns are not manifested.
 • Returns are in the future.

This applies to many preventative health activities: water treatment, medicine regimens, latrine and cookstove use, etc.
Barriers to adoption

- Not information.
- Not resources.

- Repetitive activity.
 - Repeated engagement is costly
 - ...unless it becomes a habit.
- Preventative activity.
 - Returns are not manifested.
 - Returns are in the future.

This applies to many preventative health activities: water treatment, medicine regimens, latrine and cookstove use, etc.
Barriers to adoption

- Not information.
- Not resources.

- Repetitive activity.
 - Repeated engagement is costly
 - ...unless it becomes a habit.

- Preventative activity.
 - Returns are not manifested.
 - Returns are in the future.

This applies to many preventative health activities: water treatment, medicine regimens, latrine and cookstove use, etc.
Hand hygiene in Birbhum, West Bengal

<table>
<thead>
<tr>
<th>Hygiene Knowledge</th>
<th>Mean (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soap makes hands cleaner than water</td>
<td>94.59</td>
<td>2904</td>
</tr>
<tr>
<td>Soap prevents sickness</td>
<td>80.33</td>
<td>2903</td>
</tr>
<tr>
<td>Soap cleans germs</td>
<td>78.99</td>
<td>2904</td>
</tr>
<tr>
<td>Cold can spread across people</td>
<td>60.7</td>
<td>2903</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hygiene Practice</th>
<th>Mean (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eat with hands</td>
<td>100</td>
<td>2903</td>
</tr>
<tr>
<td>Rinse hands before eating</td>
<td>98.83</td>
<td>2900</td>
</tr>
<tr>
<td>Has soap in house</td>
<td>99.76</td>
<td>2903</td>
</tr>
<tr>
<td>Use soap for bathing</td>
<td>90.41</td>
<td>2898</td>
</tr>
<tr>
<td>Wash with soap before eating</td>
<td>13.95</td>
<td>2875</td>
</tr>
<tr>
<td>Reason not wash: no habit</td>
<td>57.09</td>
<td>2454</td>
</tr>
<tr>
<td>Reason not wash: forget</td>
<td>16.87</td>
<td>2454</td>
</tr>
</tbody>
</table>
Hand hygiene in Birbhum, West Bengal

<table>
<thead>
<tr>
<th>Hygiene Knowledge</th>
<th>Mean (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soap makes hands cleaner than water</td>
<td>94.59</td>
<td>2904</td>
</tr>
<tr>
<td>Soap prevents sickness</td>
<td>80.33</td>
<td>2903</td>
</tr>
<tr>
<td>Soap cleans germs</td>
<td>78.99</td>
<td>2904</td>
</tr>
<tr>
<td>Cold can spread across people</td>
<td>60.7</td>
<td>2903</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hygiene Practice</th>
<th>Mean (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eat with hands</td>
<td>100</td>
<td>2903</td>
</tr>
<tr>
<td>Rinse hands before eating</td>
<td>98.83</td>
<td>2900</td>
</tr>
<tr>
<td>Has soap in house</td>
<td>99.76</td>
<td>2903</td>
</tr>
<tr>
<td>Use soap for bathing</td>
<td>90.41</td>
<td>2898</td>
</tr>
<tr>
<td>Wash with soap before eating</td>
<td>13.95</td>
<td>2875</td>
</tr>
<tr>
<td>Reason not wash: no habit</td>
<td>57.09</td>
<td>2454</td>
</tr>
<tr>
<td>Reason not wash: forget</td>
<td>16.87</td>
<td>2454</td>
</tr>
</tbody>
</table>
Hand hygiene in Birbhum, West Bengal

<table>
<thead>
<tr>
<th>Hygiene Knowledge</th>
<th>Mean (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soap makes hands cleaner than water</td>
<td>94.59</td>
<td>2904</td>
</tr>
<tr>
<td>Soap prevents sickness</td>
<td>80.33</td>
<td>2903</td>
</tr>
<tr>
<td>Soap cleans germs</td>
<td>78.99</td>
<td>2904</td>
</tr>
<tr>
<td>Cold can spread across people</td>
<td>60.7</td>
<td>2903</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hygiene Practice</th>
<th>Mean (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eat with hands</td>
<td>100</td>
<td>2903</td>
</tr>
<tr>
<td>Rinse hands before eating</td>
<td>98.83</td>
<td>2900</td>
</tr>
<tr>
<td>Has soap in house</td>
<td>99.76</td>
<td>2903</td>
</tr>
<tr>
<td>Use soap for bathing</td>
<td>90.41</td>
<td>2898</td>
</tr>
<tr>
<td>Wash with soap before eating</td>
<td>13.95</td>
<td>2875</td>
</tr>
<tr>
<td>Reason not wash: no habit</td>
<td>57.09</td>
<td>2454</td>
</tr>
<tr>
<td>Reason not wash: forget</td>
<td>16.87</td>
<td>2454</td>
</tr>
</tbody>
</table>
Hand hygiene in Birbhum, West Bengal

<table>
<thead>
<tr>
<th>Hygiene Knowledge</th>
<th>Mean (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soap makes hands cleaner than water</td>
<td>94.59</td>
<td>2904</td>
</tr>
<tr>
<td>Soap prevents sickness</td>
<td>80.33</td>
<td>2903</td>
</tr>
<tr>
<td>Soap cleans germs</td>
<td>78.99</td>
<td>2904</td>
</tr>
<tr>
<td>Cold can spread across people</td>
<td>60.7</td>
<td>2903</td>
</tr>
<tr>
<td>Hygiene Practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eat with hands</td>
<td>100</td>
<td>2903</td>
</tr>
<tr>
<td>Rinse hands before eating</td>
<td>98.83</td>
<td>2900</td>
</tr>
<tr>
<td>Has soap in house</td>
<td>99.76</td>
<td>2903</td>
</tr>
<tr>
<td>Use soap for bathing</td>
<td>90.41</td>
<td>2898</td>
</tr>
<tr>
<td>Wash with soap before eating</td>
<td>13.95</td>
<td>2875</td>
</tr>
<tr>
<td>Reason not wash: no habit</td>
<td>57.09</td>
<td>2454</td>
</tr>
<tr>
<td>Reason not wash: forget</td>
<td>16.87</td>
<td>2454</td>
</tr>
</tbody>
</table>
Conceptual Framework: Rational Addiction

1. Habit formation (addiction): intertemporal complementarities in the utility from consumption
 - Marginal utility from consumption today is higher when more has been consumed in the past

2. Rational habit formation: Agents are aware of complementarities, so changes in future consumption affect current consumption
Conceptual Framework: Rational Addiction

1 Habit formation (addiction): intertemporal complementarities in the utility from consumption
 - Marginal utility from consumption today is higher when more has been consumed in the past

2 Rational habit formation: Agents are aware of complementarities, so changes in future consumption affect current consumption
Conceptual Framework: Rational Addiction

1. Habit formation (addiction): intertemporal complementarities in the utility from consumption
 - Marginal utility from consumption today is higher when more has been consumed in the past

2. Rational habit formation: Agents are aware of complementarities, so changes in future consumption affect current consumption
Rational addiction empirical literature

\[c_t = \theta c_{t-1} + \beta \theta c_{t+1} + \delta p_t + \epsilon_t \]

Empirical concerns:

- endogeneity of tax instrument
- serial correlation in prices
- implausibility of future price knowledge
This study

Contributions

1. First experimental test of rational addiction, addressing identification concerns of RA literature
2. First rational habit formation test of a good habit
3. Distinguishes role of rewards (incentives) from feedback (monitoring)
4. Significantly improves measurement technology

Why do we care?

1. Child health impact
2. Designing optimal interventions
 - If agents are not rational habit formers, we have a reason to subsidize initial consumption of habitual activities
This study

Contributions

1. First experimental test of rational addiction, addressing identification concerns of RA literature
2. First rational habit formation test of a good habit
3. Distinguishes role of rewards (incentives) from feedback (monitoring)
4. Significantly improves measurement technology

Why do we care?

1. Child health impact
2. Designing optimal interventions
 - If agents are not rational habit formers, we have a reason to subsidize initial consumption of habitual activities
Contributions

1. First experimental test of rational addiction, addressing identification concerns of RA literature
2. First rational habit formation test of a good habit
3. Distinguishes role of rewards (incentives) from feedback (monitoring)
4. Significantly improves measurement technology

Why do we care?

1. Child health impact
2. Designing optimal interventions
 - If agents are not rational habit formers, we have a reason to subsidize initial consumption of habitual activities
Contributions

1. First experimental test of rational addiction, addressing identification concerns of RA literature
2. First rational habit formation test of a good habit
3. Distinguishes role of rewards (incentives) from feedback (monitoring)
4. Significantly improves measurement technology

Why do we care?

1. Child health impact
2. Designing optimal interventions
 - If agents are not rational habit formers, we have a reason to subsidize initial consumption of habitual activities
This study

Contributions

1. First experimental test of rational addiction, addressing identification concerns of RA literature
2. First rational habit formation test of a *good* habit
3. Distinguishes role of rewards (incentives) from feedback (monitoring)
4. Significantly improves measurement technology

Why do we care?

1. Child health impact
2. Designing optimal interventions
 - If agents are not rational habit formers, we have a reason to subsidize initial consumption of habitual activities
Contribution

1. First experimental test of rational addiction, addressing identification concerns of RA literature
2. First rational habit formation test of a *good* habit
3. Distinguishes role of rewards (incentives) from feedback (monitoring)
4. Significantly improves measurement technology

Why do we care?

1. Child health impact
2. Designing optimal interventions
 - If agents are not rational habit formers, we have a reason to subsidize initial consumption of habitual activities
This study

Contributions

1. First experimental test of rational addiction, addressing identification concerns of RA literature
2. First rational habit formation test of a good habit
3. Distinguishes role of rewards (incentives) from feedback (monitoring)
4. Significantly improves measurement technology

Why do we care?

1. Child health impact
2. Designing optimal interventions
 - If agents are not rational habit formers, we have a reason to subsidize initial consumption of habitual activities
This study

Contributions

1. First experimental test of rational addiction, addressing identification concerns of RA literature
2. First rational habit formation test of a *good* habit
3. Distinguishes role of rewards (incentives) from feedback (monitoring)
4. Significantly improves measurement technology

Why do we care?

1. Child health impact
2. Designing optimal interventions
 - If agents are not rational habit formers, we have a reason to subsidize initial consumption of habitual activities
Measurement Technology
Measurement Technology
Handwashing outcome measure

Dispenser use during the family’s self-reported evening mealtime.
Experimental Design

Rollout of dispensers, soap, and/or calendars → After 2 weeks → After 2 months

Full sample

Incentive villages (IV)
- IV0
- IV1
- IV2a
- IV2b
- IV1

Monitoring villages (MV)
- MV0
- MV1
- MV2a
- MV2b
- MV1

IV0 → IV0 → IV0
IV1 → IV1 → IV1
IV2a → IV2a → IV2a
MV0 → MV0 → MV0
MV1 → MV1 → MV1
MV2a → MV2a → MV2a
Incentives

Rollout of dispensers, soap, and/or calendars

Incentive villages (IV)

- IV0: control

- IV1: dispenser, monitoring, and one ticket

- IV2a: anticipate three tickets

- IV2b: receive three tickets

IV0: control
Incentives: rational habit formation

Rollout of dispensers, soap, and/or calendars

After 2 weeks

Incentive villages (IV)

IV0: control

IV1: dispenser, monitoring, and one ticket

IV2a: anticipate three tickets

IV2b: receive three tickets

IV1

IV0: control

IV0

IV0
Incentives: pure effect

Rollout of dispensers, soap, and/or calendars → After 2 weeks → After 2 months

Incentive villages (IV)

IV0: control

IV1: dispenser, monitoring, and one ticket

IV1

IV2a: anticipate three tickets

IV2b: receive three tickets

IV0

IV0

IV1
Incentives: persistence of stock accumulation

Rollout of dispensers, soap, and/or calendars → After 2 weeks → After 2 months

- Incentive villages (IV)
 - IV0: control
 - IV1: dispenser, monitoring, and one ticket
 - IV2a: anticipate three tickets
 - IV2b: receive three tickets

- IV0
- IV0
- IV1
- IV1
- IV0
- IV0
- IV1
- IV1
- IV2b: receive three tickets
- IV2a: receive three tickets
Parallel monitoring experiment

Disentangling:

1. Incentives from feedback alone
2. Rational habit formation drowned out by hidden cost of incentives
Experimental Design

Rollout of dispensers, soap, and/or calendars → **After 2 weeks** → **After 2 months**

Incentive villages (IV)
- IV0
- IV1
- IV2a → IV2b → IV1 → IV0

Monitoring villages (MV)
- MV0
- MV1: dispenser
- MV1
- MV2a
- MV2b
- MV1
- MV0
- MV0
- MV0
- MV0
Monitoring

Rollout of dispensers, soap, and/or calendars

MV0: control

Monitoring villages (MV)

MV1: dispenser

MV2a: anticipate monitoring

MV2b: receive monitoring
Monitoring: rational habit formation

Rollout of dispensers, soap, and/or calendars

MV0: control

MV1: dispenser

MV2a: anticipate monitoring

MV0

MV1

MV2a

After 2 weeks

Monitoring villages (MV)

MV0: control

MV1: dispenser

MV2a: anticipate monitoring

MV0

MV0

MV1

MV2a
Monitoring: pure effect

Rollout of dispensers, soap, and/or calendars → After 2 weeks → After 2 months

Monitoring villages (MV)

MV0: control

MV1: dispenser

MV0

MV1

MV2a: anticipate monitoring

MV2b: receive monitoring

MV0

MV1
Monitoring: persistence of stock accumulation

Rollout of dispensers, soap, and/or calendars

- After 2 weeks
- After 2 months

- **Monitoring villages (MV)**
 - MV0: control
 - MV1: dispenser
 - MV2a: anticipate monitoring
 - MV2b: receive monitoring

- MV0
- MV0
- MV1
- MV2b: receive monitoring
- MV2a: monitoring
Incentives do not shift daytime use

![Graph showing number of dispenser presses over days with multiple lines for dispenser control and one ticket daily incentive.]

- Dispenser control
- One ticket daily incentive
But do shift evening use

Number of uses in evening (5pm and later)

- Dispenser control
- One ticket daily incentive
Incentives hit their target

Likelihood of washing during reported dinner time

- Dispenser control
- One ticket daily incentive
Presentation of results for rational addiction

We first need to identify that:

1. (future) handwashing rates are exogenously shifted
 ⇒ the tripling of tickets and monitoring both change handwashing rates

2. handwashing is a habit-forming activity
 ⇒ after withdrawal of incentives and monitoring, households continue to wash more than control

Then, examine presence of rational habit formation.
 ⇒ households anticipating a tripling of tickets or commencement of monitoring wash more than nonanticipating counterparts
Presentation of results for rational addiction

We first need to identify that:

1. (future) handwashing rates are exogenously shifted
 ⇒ the tripling of tickets and monitoring both change handwashing rates

2. handwashing is a habit-forming activity
 ⇒ after withdrawal of incentives and monitoring, households continue to wash more than control

Then, examine presence of rational habit formation.

⇒ households anticipating a tripling of tickets or commencement of monitoring wash more than nonanticipating counterparts
Presentation of results for rational addiction

We first need to identify that:

1. (future) handwashing rates are exogenously shifted
 ⇒ the tripling of tickets and monitoring both change handwashing rates

2. handwashing is a habit-forming activity
 ⇒ after withdrawal of incentives and monitoring, households continue to wash more than control

Then, examine presence of rational habit formation.
 ⇒ households anticipating a tripling of tickets or commencement of monitoring wash more than nonanticipating counterparts
Presentation of results for rational addiction

We first need to identify that:

1. (future) handwashing rates are exogenously shifted
 ⇒ the tripling of tickets and monitoring both change handwashing rates

2. handwashing is a habit-forming activity
 ⇒ after withdrawal of incentives and monitoring, households continue to wash more than control

Then, examine presence of rational habit formation.
 ⇒ households anticipating a tripling of tickets or commencement of monitoring wash more than nonanticipating counterparts
Contemporaneous effects: interventions increase handwashing

<table>
<thead>
<tr>
<th></th>
<th>Likelihood of using during reported dinnertime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Current triple incentive</td>
<td>0.0503**</td>
</tr>
<tr>
<td></td>
<td>(0.0261)</td>
</tr>
<tr>
<td>Current monitoring</td>
<td></td>
</tr>
<tr>
<td>Mean of control group</td>
<td>0.598</td>
</tr>
<tr>
<td></td>
<td>[0.0217]</td>
</tr>
<tr>
<td>Observations</td>
<td>9,912</td>
</tr>
</tbody>
</table>

Notes: Observations are at the household-day level. All regressions include village and day fixed effects. p-values adjusted for multiple hypothesis testing using Anderson (2008). *** p<0.01, ** p<0.05, * p<0.1.
Contemporaneous effects: tripling tickets increases handwashing

Fraction of households who used at dinner time

Day

Fraction of households

- Standard incentive
- 3x incentive
Contemporaneous effects: monitoring increases handwashing

Fraction of households who used at dinner time

- Dispenser control
- Monitoring
Habit formation: temporary interventions persist

<table>
<thead>
<tr>
<th></th>
<th>Likelihood of using during reported dinnertime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Former incentives</td>
<td>0.225***</td>
</tr>
<tr>
<td></td>
<td>[0.0385]</td>
</tr>
<tr>
<td>Former monitoring</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean of control group</td>
<td>0.379</td>
</tr>
<tr>
<td></td>
<td>[0.0269]</td>
</tr>
<tr>
<td>Observations</td>
<td>7866</td>
</tr>
</tbody>
</table>

Notes: Observations are at the household-day level. All regressions include village and day fixed effects. p-values adjusted for multiple hypothesis testing using Anderson (2008). *** p<0.01, ** p<0.05, * p<0.1.

Notes:
- Former incentives: 0.225*** [0.0385]
- Former monitoring: 0.0959*** [0.0274]
- Mean of control group: 0.379 [0.0269] 0.267 [0.0234]
Habit formation: temporary incentive effects persist

Dinnertime dispenser use: formerly incentivized

Fraction of households

Day

Dispenser control

Former incentive
Habit formation: temporary monitoring effects persist

Dinnertime dispenser use: formerly monitored

![Graph showing the fraction of households using dispensers over time. The graph includes two lines: one for dispenser control and another for former monitoring.]
Rational habit formation

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood of using during reported dinnertime</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day -54 to -1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day -21 to -1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticipated triple incentive</td>
<td>-0.00593</td>
<td>-0.0381</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0235]</td>
<td>[0.0305]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticipated monitoring</td>
<td>0.052*</td>
<td>0.08**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.0243]</td>
<td>[0.0284]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean of control group</td>
<td>0.454</td>
<td>0.536</td>
<td>0.231</td>
<td>0.205</td>
</tr>
<tr>
<td></td>
<td>[0.0197]</td>
<td>[0.0257]</td>
<td>[0.0191]</td>
<td>[0.0218]</td>
</tr>
<tr>
<td>Observations</td>
<td>23,273</td>
<td>9,176</td>
<td>16,268</td>
<td>6,297</td>
</tr>
</tbody>
</table>

Notes: Observations are at the household-day level. All regressions include village and day fixed effects. p-values adjusted for multiple hypothesis testing using Anderson (2008). *** p<0.01, ** p<0.05, * p<0.1.
Rational habit formation

<table>
<thead>
<tr>
<th></th>
<th>Likelihood of using during reported dinnertime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>Day -54 to -1</td>
</tr>
<tr>
<td>Anticipated triple incentive</td>
<td>-0.00593</td>
</tr>
<tr>
<td></td>
<td>[0.0235]</td>
</tr>
<tr>
<td>Anticipated monitoring</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean of control group</td>
<td>0.454</td>
</tr>
<tr>
<td></td>
<td>[0.0197]</td>
</tr>
<tr>
<td>Observations</td>
<td>23,273</td>
</tr>
</tbody>
</table>

Notes: Observations are at the household-day level. All regressions include village and day fixed effects. p-values adjusted for multiple hypothesis testing using Anderson (2008). *** p<0.01, ** p<0.05, * p<0.1.
No evidence of rational habit formation in incentives
Strong evidence of rational habit formation in monitoring

Dinnertime dispenser use: monitoring

- Unanticipated monitoring
- Anticipated monitoring

Day

Fraction of households
Extrinsic v. intrinsic motivation

Why the differences in rational habit formation between incentives and monitoring?

- Loss aversion in monitoring
- Hidden cost of extrinsic rewards in incentives
 - anchoring effects
 - updating of costs (Benabou and Tirole 2003)
Handwashing results

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Willingness to pay (Rs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated household</td>
<td>-4.738**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1.935]</td>
<td></td>
</tr>
<tr>
<td>Incentive</td>
<td>-9.060***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2.303]</td>
<td></td>
</tr>
<tr>
<td>Monitoring</td>
<td>1.415</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3.705]</td>
<td></td>
</tr>
<tr>
<td>Dispenser control</td>
<td>6.011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[5.243]</td>
<td></td>
</tr>
<tr>
<td>Mean of pure control</td>
<td>55.74</td>
<td>55.74</td>
</tr>
<tr>
<td></td>
<td>[1.476]</td>
<td>[1.477]</td>
</tr>
<tr>
<td>Observations</td>
<td>2,750</td>
<td>2,750</td>
</tr>
</tbody>
</table>

Notes: Observations are at the household level. All regressions include village level fixed effects. *** p<0.01, ** p<0.05, * p<0.1.
Formerly incentivized value soap less

Willingness-to-pay for one month of liquid soap

- Baseline soap expenditure
- Incentive
- Monitoring
- Dispenser control
- Pure control
Child health: incidence

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any loose stool</td>
<td>-0.0315***</td>
<td>-0.0817***</td>
<td>-0.0393**</td>
<td>-0.204**</td>
</tr>
<tr>
<td>Total days of loose stool</td>
<td>[0.00975]</td>
<td>[0.0236]</td>
<td>[0.0154]</td>
<td>[0.0884]</td>
</tr>
<tr>
<td>Any ARI symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total days of ARI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated household</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean of pure control</td>
<td>0.100</td>
<td>0.209</td>
<td>0.270</td>
<td>1.247</td>
</tr>
<tr>
<td></td>
<td>[0.00572]</td>
<td>[0.0151]</td>
<td>[0.00886]</td>
<td>[0.0504]</td>
</tr>
<tr>
<td>Observations</td>
<td>3,820</td>
<td>3,830</td>
<td>3,830</td>
<td>3,830</td>
</tr>
</tbody>
</table>

Notes: Observations are at the child level. "Treated household" is any household that received a dispenser. p-values adjusted for multiple hypothesis testing using Anderson (2008). *** p<0.01, ** p<0.05, * p<0.1.
Child health: anthropometry

<table>
<thead>
<tr>
<th>Treated household</th>
<th>Weight for age z-score</th>
<th>Height for age z-score</th>
<th>Mid-arm circ. for age z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.135*</td>
<td>0.227*</td>
<td>0.0752*</td>
</tr>
<tr>
<td></td>
<td>[0.0640]</td>
<td>[0.0902]</td>
<td>[0.0518]</td>
</tr>
<tr>
<td>Mean of pure control</td>
<td>-2.167</td>
<td>-1.866</td>
<td>-1.365</td>
</tr>
<tr>
<td></td>
<td>[0.0459]</td>
<td>[0.0666]</td>
<td>[0.0432]</td>
</tr>
<tr>
<td>Observations</td>
<td>863</td>
<td>862</td>
<td>858</td>
</tr>
</tbody>
</table>

Notes: Observations are at the child level. "Treated household" is any household that received a dispenser. p-values adjusted for multiple hypothesis testing using Anderson (2008). *** p<0.01, ** p<0.05, * p<0.1.
Child health: treatment on the treated estimates

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any loose stool</td>
<td>-0.0637***</td>
<td>-0.164***</td>
<td>-0.0668**</td>
<td>-0.358**</td>
<td>0.254**</td>
<td>0.417**</td>
<td>0.104</td>
</tr>
<tr>
<td></td>
<td>[0.0200]</td>
<td>[0.0485]</td>
<td>[0.0317]</td>
<td>[0.179]</td>
<td>[0.124]</td>
<td>[0.167]</td>
<td>[0.0981]</td>
</tr>
<tr>
<td>Total days of ARI symptoms</td>
<td>0.100</td>
<td>0.209</td>
<td>0.270</td>
<td>1.247</td>
<td>-2.167</td>
<td>-1.866</td>
<td>-1.365</td>
</tr>
<tr>
<td></td>
<td>[0.00572]</td>
<td>[0.0151]</td>
<td>[0.00886]</td>
<td>[0.0504]</td>
<td>[0.0458]</td>
<td>[0.0665]</td>
<td>[0.0432]</td>
</tr>
<tr>
<td>Weight for age z-score</td>
<td>3,814</td>
<td>3,824</td>
<td>3,824</td>
<td>3,824</td>
<td>861</td>
<td>860</td>
<td>856</td>
</tr>
<tr>
<td>Height for age z-score</td>
<td>3,814</td>
<td>3,824</td>
<td>3,824</td>
<td>3,824</td>
<td>861</td>
<td>860</td>
<td>856</td>
</tr>
<tr>
<td>Mid-arm circ. for age z-score</td>
<td>3,814</td>
<td>3,824</td>
<td>3,824</td>
<td>3,824</td>
<td>861</td>
<td>860</td>
<td>856</td>
</tr>
</tbody>
</table>

Notes: Observations are at the child level for all regressions. Regression shows the treatment on the treated estimates where "treated" is a household who uses the dispenser at dinnertime, which is instrumented for by each of the three treatment groups (incentives, monitoring, and dispenser). p-values adjusted for multiple hypothesis testing using Anderson (2008). *** p<0.01, ** p<0.05, * p<0.1.
To summarize:

1. Financial incentives and monitoring without incentives increases handwashing.
2. Handwashing is habitual: effects persist after incentives or monitoring are removed.
3. Agents are rational regarding habit formation: anticipation of monitoring increases handwashing.
 • ...but not the anticipation of incentives.
4. Handwashing alone has substantial impacts on child health: we now have a sense of the production function.
Thank you!